Pilet Jared, Beardsley Scott A, Carlson Chad, Anderson Christopher T, Ustine Candida, Lew Sean, Mueller Wade, Raghavan Manoj
Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.
Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA.
Sci Rep. 2025 May 22;15(1):17801. doi: 10.1038/s41598-025-02679-4.
Functional connectivity (FC) analyses of intracranial EEG (iEEG) signals can potentially improve the mapping of epileptic networks in drug-resistant focal epilepsy. However, it remains unclear whether FC-based metrics provide additional value beyond established epilepsy biomarkers such as epileptic spikes and high-frequency oscillations (HFOs). Using interictal iEEG data from 26 patients, we estimated FC across eight frequency bands (4-290 Hz) using amplitude envelope correlation (AEC) and phase locking value (PLV). From the resulting FC-matrices, we estimated two graph metrics each to derive 32 FC-based features. We also extracted features related to spikes, HFOs, and power spectral densities (PSD). A trained support vector machine (SVM) classifier predicted seizure onset zones (SOZs) with an area under the ROC curve (AUC) of 0.91 for node-level 4-fold cross-validation (CV), 0.69 for patient-level 4-fold CV, and 0.73 for patient-level leave-one-out CV. Notably, gamma-band graph features from AECs outperformed spikes and HFOs in SOZ prediction when using an equivalent number of features. Our results strongly suggest that AEC-based features may provide more information about epileptogenicity compared to PLV-based features. Furthermore, machine learning provides a robust approach for identifying useful FC-based features and integrating information from putative biomarkers of epilepsy to better localize epileptogenic networks.
颅内脑电图(iEEG)信号的功能连接性(FC)分析可能会改善药物难治性局灶性癫痫中癫痫网络的映射。然而,基于FC的指标是否能提供超越癫痫发作棘波和高频振荡(HFOs)等既定癫痫生物标志物的额外价值仍不清楚。我们使用26名患者的发作间期iEEG数据,通过幅度包络相关性(AEC)和锁相值(PLV)估计了八个频段(4 - 290Hz)的FC。从得到的FC矩阵中,我们分别估计了两个图指标以得出32个基于FC的特征。我们还提取了与棘波、HFOs和功率谱密度(PSD)相关的特征。一个经过训练的支持向量机(SVM)分类器预测癫痫发作起始区(SOZs),在节点级4折交叉验证(CV)中,ROC曲线下面积(AUC)为0.91,在患者级4折CV中为0.69,在患者级留一法CV中为0.73。值得注意的是,当使用等量特征时,AECs的γ频段图特征在SOZ预测中优于棘波和HFOs。我们的结果强烈表明,与基于PLV的特征相比,基于AEC的特征可能提供更多关于致痫性的信息。此外,机器学习为识别有用的基于FC的特征以及整合来自癫痫假定生物标志物的信息以更好地定位致痫网络提供了一种强大的方法。