Suppr超能文献

基于高光谱成像结合机器学习和麻雀搜索算法评估羊肉香精作用下的羊肉掺假情况

Evaluation of Mutton Adulteration under the Effect of Mutton Flavour Essence Using Hyperspectral Imaging Combined with Machine Learning and Sparrow Search Algorithm.

作者信息

Fan Binbin, Zhu Rongguang, He Dongyu, Wang Shichang, Cui Xiaomin, Yao Xuedong

机构信息

College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China.

Key Laboratory of the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.

出版信息

Foods. 2022 Jul 30;11(15):2278. doi: 10.3390/foods11152278.

Abstract

The evaluation of mutton adulteration faces new challenges because of mutton flavour essence, which achieves a similar flavour between the adulterant and mutton. Hence, methods for classifying and quantifying the adulterated mutton under the effect of mutton flavour essence, based on near-infrared hyperspectral imaging (NIR-HSI, 1000-2500 nm) combined with machine learning (ML) and sparrow search algorithm (SSA), were proposed in this study. After spectral preprocessing via first derivative combined with multiple scattering correction (1D + MSC), classification and quantification models were established using back propagation neural network (BP), extreme learning machine (ELM) and support vector machine/regression (SVM/SVR). SSA was further used to explore the global optimal parameters of these models. Results showed that the performance of models improves after optimisation via the SSA. SSA-SVM achieved the optimal discrimination result, with an accuracy of 99.79% in the prediction set; SSA-SVR achieved the optimal prediction result, with an R of 0.9304 and an RMSEP of 0.0458 g·g. Hence, NIR-HSI combined with ML and SSA is feasible for classification and quantification of mutton adulteration under the effect of mutton flavour essence. This study can provide a theoretical and practical reference for the evaluation and supervision of food quality under complex conditions.

摘要

由于羊肉香精的存在,掺假羊肉的评估面临新的挑战,羊肉香精使得掺假物与羊肉具有相似的风味。因此,本研究提出了基于近红外高光谱成像(NIR-HSI,1000-2500nm)结合机器学习(ML)和麻雀搜索算法(SSA),对在羊肉香精影响下的掺假羊肉进行分类和定量的方法。通过一阶导数结合多元散射校正(1D+MSC)进行光谱预处理后,使用反向传播神经网络(BP)、极限学习机(ELM)和支持向量机/回归(SVM/SVR)建立分类和定量模型。进一步使用SSA探索这些模型的全局最优参数。结果表明,通过SSA优化后模型的性能得到提高。SSA-SVM获得了最优的判别结果,预测集中的准确率为99.79%;SSA-SVR获得了最优的预测结果,R为0.9304,RMSEP为0.0458g·g。因此,NIR-HSI结合ML和SSA对于在羊肉香精影响下的掺假羊肉的分类和定量是可行的。本研究可为复杂条件下食品质量的评估和监管提供理论和实践参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a356/9368686/113ba15f30a5/foods-11-02278-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验