School of Information Science and Engineering, Xinjiang University, Urumqi 830017, China.
The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, China.
Sensors (Basel). 2023 May 17;23(10):4815. doi: 10.3390/s23104815.
Infrared (IR) spectroscopy is nondestructive, fast, and straightforward. Recently, a growing number of pasta companies have been using IR spectroscopy combined with chemometrics to quickly determine sample parameters. However, fewer models have used deep learning models to classify cooked wheat food products and even fewer have used deep learning models to classify Italian pasta. To solve these problems, an improved CNN-LSTM neural network is proposed to identify pasta in different physical states (frozen vs. thawed) using IR spectroscopy. A one-dimensional convolutional neural network (1D-CNN) and long short-term memory (LSTM) were constructed to extract the local abstraction and sequence position information from the spectra, respectively. The results showed that the accuracy of the CNN-LSTM model reached 100% after using principal component analysis (PCA) on the Italian pasta spectral data in the thawed state and 99.44% after using PCA on the Italian pasta spectral data in the frozen form, verifying that the method has high analytical accuracy and generalization. Therefore, the CNN-LSTM neural network combined with IR spectroscopy helps to identify different pasta products.
近红外(IR)光谱分析具有非破坏性、快速和直接的特点。最近,越来越多的面食公司开始将IR 光谱分析与化学计量学结合起来,以快速确定样品参数。然而,使用深度学习模型来分类熟制小麦食品的模型较少,甚至更少的模型使用深度学习模型来分类意大利面食。为了解决这些问题,提出了一种改进的 CNN-LSTM 神经网络,用于使用 IR 光谱识别不同物理状态(冷冻与解冻)的面食。构建了一维卷积神经网络(1D-CNN)和长短期记忆(LSTM),分别从光谱中提取局部抽象和序列位置信息。结果表明,在对解冻状态下的意大利面食光谱数据进行主成分分析(PCA)后,CNN-LSTM 模型的准确率达到 100%,在对冷冻状态下的意大利面食光谱数据进行 PCA 后,准确率达到 99.44%,验证了该方法具有较高的分析准确性和泛化能力。因此,IR 光谱分析与 CNN-LSTM 神经网络相结合有助于识别不同的面食产品。