Suppr超能文献

k 形聚类在颅内压信号中提取宏观模式。

k-Shape clustering for extracting macro-patterns in intracranial pressure signals.

机构信息

Clinic of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Fluids Barriers CNS. 2022 Feb 5;19(1):12. doi: 10.1186/s12987-022-00311-5.

Abstract

BACKGROUND

Intracranial pressure (ICP) monitoring is a core component of neurosurgical diagnostics. With the introduction of telemetric monitoring devices in the last years, ICP monitoring has become feasible in a broader clinical setting including monitoring during full mobilization and at home, where a greater diversity of ICP waveforms are present. The need for identification of these variations, the so-called macro-patterns lasting seconds to minutes-emerges as a potential tool for better understanding the physiological underpinnings of patient symptoms.

METHODS

We introduce a new methodology that serves as a foundation for future automatic macro-pattern identification in the ICP signal to comprehensively understand the appearance and distribution of these macro-patterns in the ICP signal and their clinical significance. Specifically, we describe an algorithm based on k-Shape clustering to build a standard library of such macro-patterns.

RESULTS

In total, seven macro-patterns were extracted from the ICP signals. This macro-pattern library may be used as a basis for the classification of new ICP variation distributions based on clinical disease entities.

CONCLUSIONS

We provide the starting point for future researchers to use a computational approach to characterize ICP recordings from a wide cohort of disorders.

摘要

背景

颅内压 (ICP) 监测是神经外科诊断的核心组成部分。随着近年来遥测监测设备的引入,ICP 监测已经可以在更广泛的临床环境中进行,包括在完全活动和在家中进行监测,此时会出现更多不同的 ICP 波形。需要识别这些变化,即持续数秒到数分钟的所谓宏观模式,这可能成为更好地理解患者症状生理基础的一种潜在工具。

方法

我们介绍了一种新的方法,为未来 ICP 信号中的自动宏观模式识别奠定基础,以全面了解 ICP 信号中这些宏观模式的出现和分布及其临床意义。具体来说,我们描述了一种基于 k-形状聚类的算法来构建此类宏观模式的标准库。

结果

总共从 ICP 信号中提取了七种宏观模式。该宏观模式库可用于基于临床疾病实体对新的 ICP 变化分布进行分类。

结论

我们为未来的研究人员提供了一个起点,以便他们使用计算方法来描述来自广泛疾病队列的 ICP 记录。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f851/8817510/77f6aca93f4b/12987_2022_311_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验