Suppr超能文献

基于深度学习的生物信息学聚类方法。

Deep learning-based clustering approaches for bioinformatics.

机构信息

Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven, Sankt Augustin, Germany.

Information Systems and Databases, RWTH Aachen University, Aachen, Germany.

出版信息

Brief Bioinform. 2021 Jan 18;22(1):393-415. doi: 10.1093/bib/bbz170.

Abstract

Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions, texts and images. Further, clustering is used to gain insights into biological processes in the genomics level, e.g. clustering of gene expressions provides insights on the natural structure inherent in the data, understanding gene functions, cellular processes, subtypes of cells and understanding gene regulations. Subsequently, clustering approaches, including hierarchical, centroid-based, distribution-based, density-based and self-organizing maps, have long been studied and used in classical machine learning settings. In contrast, deep learning (DL)-based representation and feature learning for clustering have not been reviewed and employed extensively. Since the quality of clustering is not only dependent on the distribution of data points but also on the learned representation, deep neural networks can be effective means to transform mappings from a high-dimensional data space into a lower-dimensional feature space, leading to improved clustering results. In this paper, we review state-of-the-art DL-based approaches for cluster analysis that are based on representation learning, which we hope to be useful, particularly for bioinformatics research. Further, we explore in detail the training procedures of DL-based clustering algorithms, point out different clustering quality metrics and evaluate several DL-based approaches on three bioinformatics use cases, including bioimaging, cancer genomics and biomedical text mining. We believe this review and the evaluation results will provide valuable insights and serve a starting point for researchers wanting to apply DL-based unsupervised methods to solve emerging bioinformatics research problems.

摘要

聚类是许多数据驱动的生物信息学研究的核心,是一种强大的计算方法。特别是,聚类有助于以序列、表达、文本和图像的形式分析非结构化和高维数据。此外,聚类用于深入了解基因组学水平的生物过程,例如基因表达的聚类可以深入了解数据中固有的自然结构,理解基因功能、细胞过程、细胞亚型和基因调控。随后,包括层次聚类、基于质心的聚类、基于分布的聚类、基于密度的聚类和自组织映射在内的聚类方法在经典机器学习环境中得到了长期的研究和应用。相比之下,基于深度学习 (DL) 的聚类表示和特征学习尚未得到广泛的综述和应用。由于聚类的质量不仅取决于数据点的分布,还取决于学习的表示,因此深度神经网络可以有效地将高维数据空间的映射转换为低维特征空间,从而提高聚类效果。在本文中,我们回顾了基于表示学习的最新基于深度学习的聚类分析方法,我们希望这些方法对生物信息学研究特别有用。此外,我们详细探讨了基于深度学习的聚类算法的训练过程,指出了不同的聚类质量指标,并在三个生物信息学用例上评估了几种基于深度学习的方法,包括生物成像、癌症基因组学和生物医学文本挖掘。我们相信,本综述和评估结果将提供有价值的见解,并为希望应用基于深度学习的无监督方法来解决新兴生物信息学研究问题的研究人员提供一个起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b12/7820885/31b80746e652/bbz170f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验