Vilas-Boas Sérgio M, Cordova Isabella W, Abranches Dinis O, Coutinho João A P, Ferreira Olga, Pinho Simão P
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
Ind Eng Chem Res. 2023 Mar 13;62(12):5326-5335. doi: 10.1021/acs.iecr.2c03991.
The Abraham and NRTL-SAC semipredictive models were employed to represent the solubility of (-)-borneol, (1R)-(+)-camphor, l-(-)-menthol, and thymol in water and organic solvents, using data measured in this work and collected from the literature. A reduced set of solubility data was used to estimate the model parameters of the solutes, and global average relative deviations (ARDs) of 27% for the Abraham model and 15% for the NRTL-SAC model were obtained. The predictive capability of these models was tested by estimating the solubilities in solvents not included in the correlation step. Global ARDs of 8% (Abraham model) and 14% (NRTL-SAC model) were obtained. Finally, the predictive COSMO-RS model was used to describe the solubility data in organic solvents, with ARD of 16%. These results show the overall better performance of NRTL-SAC in a hybrid correlation/prediction approach, while COSMO-RS can produce very satisfactory predictions even in the absence of any experimental data.
利用本研究测定的数据以及从文献中收集的数据,采用亚伯拉罕模型和NRTL-SAC半预测模型来表示(-)-冰片、(1R)-(+)-樟脑、l-(-)-薄荷醇和百里酚在水和有机溶剂中的溶解度。使用一组简化的溶解度数据来估算溶质的模型参数,亚伯拉罕模型的全局平均相对偏差(ARD)为27%,NRTL-SAC模型的全局平均相对偏差为15%。通过估算关联步骤中未包含的溶剂中的溶解度来测试这些模型的预测能力。得到的全局ARD分别为8%(亚伯拉罕模型)和14%(NRTL-SAC模型)。最后,使用预测性的COSMO-RS模型来描述在有机溶剂中的溶解度数据,ARD为16%。这些结果表明,在混合关联/预测方法中,NRTL-SAC的整体性能更好,而即使在没有任何实验数据的情况下,COSMO-RS也能产生非常令人满意的预测结果。