Suppr超能文献

统计方法在乳腺癌诊断中的细针穿刺细胞学检查评估。

Statistical methods for evaluating the fine needle aspiration cytology procedure in breast cancer diagnosis.

机构信息

Department of Biostatistics and Medical Information, INSERM UMR1153 ECSTRRA Team, Hôpital Saint Louis, AP-HP, Paris, France.

Medipath & American Hospital of Paris, Paris, France.

出版信息

BMC Med Res Methodol. 2022 Feb 6;22(1):40. doi: 10.1186/s12874-022-01506-y.

Abstract

BACKGROUND

Statistical issues present while evaluating a diagnostic procedure for breast cancer are non rare but often ignored, leading to biased results. We aimed to evaluate the diagnostic accuracy of the fine needle aspiration cytology(FNAC), a minimally invasive and rapid technique potentially used as a rule-in or rule-out test, handling its statistical issues: suspect test results and verification bias.

METHODS

We applied different statistical methods to handle suspect results by defining conditional estimates. When considering a partial verification bias, Begg and Greenes method and multivariate imputation by chained equations were applied, however, and a Bayesian approach with respect to each gold standard was used when considering a differential verification bias. At last, we extended the Begg and Greenes method to be applied conditionally on the suspect results.

RESULTS

The specificity of the FNAC test above 94%, was always higher than its sensitivity regardless of the proposed method. All positive likelihood ratios were higher than 10, with variations among methods. The positive and negative yields were high, defining precise discriminating properties of the test.

CONCLUSION

The FNAC test is more likely to be used as a rule-in test for diagnosing breast cancer. Our results contributed in advancing our knowledge regarding the performance of FNAC test and the methods to be applied for its evaluation.

摘要

背景

评估乳腺癌诊断程序时会出现统计学问题,但这些问题经常被忽视,导致结果出现偏差。我们旨在评估细针穿刺细胞学(FNAC)的诊断准确性,FNAC 是一种微创且快速的技术,可作为确诊或排除乳腺癌的检测手段,同时处理其统计学问题:可疑检测结果和验证偏倚。

方法

我们应用不同的统计方法通过定义条件估计来处理可疑结果。当考虑部分验证偏倚时,我们应用 Begg 和 Greenes 方法和链式方程多变量插补;而当考虑差异验证偏倚时,我们应用针对每个金标准的贝叶斯方法。最后,我们扩展了 Begg 和 Greenes 方法,使其可根据可疑结果进行条件应用。

结果

FNAC 检测的特异性均高于 94%,无论采用哪种方法,其敏感性均低于特异性。所有阳性似然比均高于 10,不同方法之间存在差异。阳性和阴性检出率均较高,定义了该检测方法具有较高的鉴别特性。

结论

FNAC 检测更适合作为诊断乳腺癌的确诊检测手段。我们的研究结果有助于深入了解 FNAC 检测的性能以及评估该检测方法所应用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edab/8818244/f6bc73a8873d/12874_2022_1506_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验