School of Information, Beijing Wuzi University, Beijing 101149, China.
Comput Intell Neurosci. 2022 Jan 25;2022:3785685. doi: 10.1155/2022/3785685. eCollection 2022.
A data-driven intelligent analysis method is proposed in this paper to explore and identify the enterprise's technological innovation influencing factors. Questionnaire surveys or expert interviews are usually adopted by the traditional evaluation methods for indicators of technological innovation selection. However, it inevitably involves human factors and experts' subjective judgments, which may affect the result of enterprises evaluation. The research presents an improved text clustering method based on a semantic concept model to explore and analyze the key influencing factors of enterprise's technological innovation. The study collects textual data from 400 enterprises in Beijing and smart analyzes the critical influencing factors of enterprise's technological innovation by using the proposed method. The influencing factors can be divided into seven categories. In addition, compared with the traditional K-means clustering method, the proposed method has a good effect. We proposed a methodology to conduct an intelligent analysis for enterprise's technological innovation under the data-driven. It can provide more objective and auxiliary suggestions for the evaluation of the enterprise's technology innovation.
本文提出了一种数据驱动的智能分析方法,旨在探索和识别企业技术创新的影响因素。传统的技术创新选择指标评价方法通常采用问卷调查或专家访谈,然而,这不可避免地涉及到人为因素和专家的主观判断,可能会影响企业评价的结果。本研究提出了一种基于语义概念模型的改进文本聚类方法,用于探索和分析企业技术创新的关键影响因素。研究从北京的 400 家企业中收集了文本数据,并通过使用所提出的方法智能分析了企业技术创新的关键影响因素。影响因素可以分为七类。此外,与传统的 K-means 聚类方法相比,所提出的方法具有较好的效果。我们提出了一种在数据驱动下进行企业技术创新智能分析的方法。它可以为企业技术创新的评价提供更客观和辅助的建议。