Suppr超能文献

真菌病原体中缺氧菌丝生长的转录控制。

Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen .

机构信息

Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada.

Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.

出版信息

Front Cell Infect Microbiol. 2022 Jan 19;11:770478. doi: 10.3389/fcimb.2021.770478. eCollection 2021.

Abstract

The ability of , an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both and mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.

摘要

作为一种重要的人类真菌病原体,能够发育成丝状形态是其入侵宿主和毒力的关键决定因素。虽然缺氧是促进丝状生长的主要宿主信号之一,但将氧气可用性与丝状生长联系起来的调控回路仍知之甚少。我们进行了一项遗传筛选,鉴定出两个转录因子 Ahr1 和 Tye7 是缺氧丝状生长的核心调控因子。和突变体在缺氧环境下表现出超丝状表型,这表明这些转录因子作为缺氧丝状生长的负调控因子发挥作用。通过结合微阵列和 ChIP-chip 分析,我们对直接受 Ahr1 和 Tye7 调控的基因集进行了特征描述。我们发现 Ahr1 和 Tye7 都调节了一组独特的基因和生物学过程。我们的遗传上位性分析支持了我们的基因组学发现,并表明 Ahr1 和 Tye7 独立地作用于调节丝状生长对缺氧的反应。此外,我们的遗传相互作用实验表明,Ahr1 和 Tye7 分别通过抑制 Efg1 和 Ras1/Cyr1 通路来抑制缺氧丝状生长。这项研究为控制真菌病原体形态发生的氧敏感调控回路提供了新的、前所未有的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d29/8807691/37b6cbefba53/fcimb-11-770478-g001.jpg

相似文献

1
Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen .
Front Cell Infect Microbiol. 2022 Jan 19;11:770478. doi: 10.3389/fcimb.2021.770478. eCollection 2021.
3
Hypoxia and Temperature Regulated Morphogenesis in Candida albicans.
PLoS Genet. 2015 Aug 14;11(8):e1005447. doi: 10.1371/journal.pgen.1005447. eCollection 2015 Aug.
4
Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in .
Front Cell Infect Microbiol. 2022 Aug 8;12:960884. doi: 10.3389/fcimb.2022.960884. eCollection 2022.
6
The spliceosome impacts morphogenesis in the human fungal pathogen .
mBio. 2024 Aug 14;15(8):e0153524. doi: 10.1128/mbio.01535-24. Epub 2024 Jul 9.
7
Candida albicans Filamentation Does Not Require the cAMP-PKA Pathway .
mBio. 2022 Jun 28;13(3):e0085122. doi: 10.1128/mbio.00851-22. Epub 2022 Apr 27.
8
Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans.
Mol Microbiol. 2011 May;80(4):995-1013. doi: 10.1111/j.1365-2958.2011.07626.x. Epub 2011 Apr 6.
9
The GARP complex is required for filamentation in Candida albicans.
Genetics. 2022 Nov 30;222(4). doi: 10.1093/genetics/iyac152.

引用本文的文献

1
Transcriptomic insights into adaptation to an anaerobic environment.
Microbiol Spectr. 2025 Jul;13(7):e0302424. doi: 10.1128/spectrum.03024-24. Epub 2025 May 22.
2
Strain variation in glycolytic gene regulation.
mSphere. 2024 Nov 21;9(11):e0057924. doi: 10.1128/msphere.00579-24. Epub 2024 Oct 21.
4
Comparative transcriptional analysis of biofilms following farnesol and tyrosol treatment.
Microbiol Spectr. 2024 Apr 2;12(4):e0227823. doi: 10.1128/spectrum.02278-23. Epub 2024 Mar 5.
5
Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression.
Annu Rev Microbiol. 2023 Sep 15;77:403-425. doi: 10.1146/annurev-micro-032521-021745.
6
Anaerobic conditions are a major influence on Candida albicans chlamydospore formation.
Folia Microbiol (Praha). 2023 Apr;68(2):321-324. doi: 10.1007/s12223-022-01018-8. Epub 2022 Nov 23.
8
Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in .
Front Cell Infect Microbiol. 2022 Aug 8;12:960884. doi: 10.3389/fcimb.2022.960884. eCollection 2022.

本文引用的文献

1
I want to break free - macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape.
Curr Opin Microbiol. 2020 Dec;58:15-23. doi: 10.1016/j.mib.2020.05.007. Epub 2020 Jun 27.
3
Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture.
mBio. 2020 May 5;11(3):e00449-20. doi: 10.1128/mBio.00449-20.
5
Metabolic Reprogramming in the Opportunistic Yeast Candida albicans in Response to Hypoxia.
mSphere. 2020 Feb 26;5(1):e00913-19. doi: 10.1128/mSphere.00913-19.
6
Transcriptional control of hyphal morphogenesis in Candida albicans.
FEMS Yeast Res. 2020 Feb 1;20(1). doi: 10.1093/femsyr/foaa005.
7
A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans.
PLoS Pathog. 2019 Dec 6;15(12):e1007823. doi: 10.1371/journal.ppat.1007823. eCollection 2019 Dec.
9
Candidalysin: discovery and function in Candida albicans infections.
Curr Opin Microbiol. 2019 Dec;52:100-109. doi: 10.1016/j.mib.2019.06.002. Epub 2019 Jul 6.
10
Heme-iron acquisition in fungi.
Curr Opin Microbiol. 2019 Dec;52:77-83. doi: 10.1016/j.mib.2019.05.006. Epub 2019 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验