Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada.
Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
Front Cell Infect Microbiol. 2022 Jan 19;11:770478. doi: 10.3389/fcimb.2021.770478. eCollection 2021.
The ability of , an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both and mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.
作为一种重要的人类真菌病原体,能够发育成丝状形态是其入侵宿主和毒力的关键决定因素。虽然缺氧是促进丝状生长的主要宿主信号之一,但将氧气可用性与丝状生长联系起来的调控回路仍知之甚少。我们进行了一项遗传筛选,鉴定出两个转录因子 Ahr1 和 Tye7 是缺氧丝状生长的核心调控因子。和突变体在缺氧环境下表现出超丝状表型,这表明这些转录因子作为缺氧丝状生长的负调控因子发挥作用。通过结合微阵列和 ChIP-chip 分析,我们对直接受 Ahr1 和 Tye7 调控的基因集进行了特征描述。我们发现 Ahr1 和 Tye7 都调节了一组独特的基因和生物学过程。我们的遗传上位性分析支持了我们的基因组学发现,并表明 Ahr1 和 Tye7 独立地作用于调节丝状生长对缺氧的反应。此外,我们的遗传相互作用实验表明,Ahr1 和 Tye7 分别通过抑制 Efg1 和 Ras1/Cyr1 通路来抑制缺氧丝状生长。这项研究为控制真菌病原体形态发生的氧敏感调控回路提供了新的、前所未有的见解。