Hnida-Gut Katarzyna E, Sousa Marilyne, Hopstaken Marinus, Reidt Steffen, Moselund Kirsten, Schmid Heinz
IBM Research Europe-Zurich, Rüschlikon, Switzerland.
IBM T.J. Watson Research Center-Yorktown Heights, New York, NY, United States.
Front Chem. 2022 Jan 20;9:810256. doi: 10.3389/fchem.2021.810256. eCollection 2021.
High-performance electronics would greatly benefit from a versatile III-V integration process on silicon. Unfortunately, integration using hetero epitaxy is hampered by polarity, lattice, and thermal expansion mismatch. This work proposes an alternative concept of III-V integration combining advantages of pulse electrodeposition, template-assisted selective epitaxy, and recrystallization from a melt. Efficient electrodeposition of nano-crystalline and stochiometric InSb in planar templates on Si (001) is achieved. The InSb deposits are analysed by high resolution scanning transmission electron microscopy (HR-STEM) and energy-dispersive X-ray spectroscopy (EDX) before and after melting and recrystallization. The results show that InSb can crystallise epitaxially on Si with the formation of stacking faults. Furthermore, X-ray photoelectron (XPS) and Auger electron (AE) spectroscopy analysis indicate that the InSb crystal size is limited by the impurity concentration resulting from the electrodeposition process.
高性能电子产品将极大地受益于在硅上进行的通用III-V族集成工艺。不幸的是,使用异质外延进行集成受到极性、晶格和热膨胀失配的阻碍。这项工作提出了一种III-V族集成的替代概念,它结合了脉冲电沉积、模板辅助选择性外延和熔体再结晶的优点。在Si(001)平面模板中实现了纳米晶和化学计量比InSb的高效电沉积。通过高分辨率扫描透射电子显微镜(HR-STEM)和能量色散X射线光谱(EDX)对InSb沉积物在熔化和再结晶前后进行了分析。结果表明,InSb可以在Si上外延结晶并形成堆垛层错。此外,X射线光电子能谱(XPS)和俄歇电子能谱(AES)分析表明,InSb晶体尺寸受电沉积过程中产生的杂质浓度限制。