Suppr超能文献

整合公开信息以筛选《有毒物质控制法》下化学物质优先级排序的潜在候选物:一项使用遗传毒性和致癌性的概念验证案例研究

Integrating publicly available information to screen potential candidates for chemical prioritization under the Toxic Substances Control Act: A proof of concept case study using genotoxicity and carcinogenicity.

作者信息

Patlewicz Grace, Dean Jeffry L, Gibbons Catherine F, Judson Richard S, Keshava Nagalakshmi, Vegosen Leora, Martin Todd M, Pradeep Prachi, Simha Anita, Warren Sarah H, Gwinn Maureen R, DeMarini David M

机构信息

Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.

Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA.

出版信息

Comput Toxicol. 2021 Nov 1;20:1-100185. doi: 10.1016/j.comtox.2021.100185.

Abstract

The Toxic Substances Control Act (TSCA) became law in the U.S. in 1976 and was amended in 2016. The amended law requires the U.S. EPA to perform risk-based evaluations of existing chemicals. Here, we developed a tiered approach to screen potential candidates based on their genotoxicity and carcinogenicity information to inform the selection of candidate chemicals for prioritization under TSCA. The approach was underpinned by a large database of carcinogenicity and genotoxicity information that had been compiled from various public sources. Carcinogenicity data included weight-of-evidence human carcinogenicity evaluations and animal cancer data. Genotoxicity data included bacterial gene mutation data from the (Ames) and WP2 assays and chromosomal mutation (clastogenicity) data. Additionally, Ames and clastogenicity outcomes were predicted using the alert schemes within the OECD QSAR Toolbox and the Toxicity Estimation Software Tool (TEST). The evaluation workflows for carcinogenicity and genotoxicity were developed along with associated scoring schemes to make an overall outcome determination. For this case study, two sets of chemicals, the TSCA Active Inventory non-confidential portion list available on the EPA CompTox Chemicals Dashboard (33,364 chemicals, 'TSCA Active List') and a representative proof-of-concept (POC) set of 238 chemicals were profiled through the two workflows to make determinations of carcinogenicity and genotoxicity potential. Of the 33,364 substances on the 'TSCA Active List', overall calls could be made for 20,371 substances. Here 46.67%% (9507) of substances were non-genotoxic, 0.5% (103) were scored as inconclusive, 43.93% (8949) were predicted genotoxic and 8.9% (1812) were genotoxic. Overall calls for genotoxicity could be made for 225 of the 238 POC chemicals. Of these, 40.44% (91) were non-genotoxic, 2.67% (6) were inconclusive, 6.22% (14) were predicted genotoxic, and 50.67% (114) genotoxic. The approach shows promise as a means to identify potential candidates for prioritization from a genotoxicity and carcinogenicity perspective.

摘要

《有毒物质控制法》(TSCA)于1976年在美国成为法律,并于2016年进行了修订。修订后的法律要求美国环境保护局(EPA)对现有化学品进行基于风险的评估。在此,我们开发了一种分层方法,根据潜在候选物的遗传毒性和致癌性信息进行筛选,以为TSCA下优先排序的候选化学品选择提供参考。该方法以一个从各种公共来源汇编的大型致癌性和遗传毒性信息数据库为支撑。致癌性数据包括证据权重法的人类致癌性评估和动物癌症数据。遗传毒性数据包括来自艾姆斯试验(Ames)和WP2试验的细菌基因突变数据以及染色体突变(断裂剂性)数据。此外,利用经合组织(OECD)QSAR工具箱和毒性估计软件工具(TEST)中的警示方案预测了艾姆斯试验和断裂剂性结果。制定了致癌性和遗传毒性的评估工作流程以及相关评分方案,以做出总体结果判定。对于本案例研究,通过这两个工作流程对两组化学品进行了分析,即EPA综合毒性化学品仪表板上提供的TSCA活性清单非保密部分列表(33364种化学品,“TSCA活性列表”)以及一组具有代表性的238种化学品的概念验证(POC)集,以确定其致癌性和遗传毒性潜力。在“TSCA活性列表”中的33364种物质中,能够对20371种物质做出总体判定。其中,46.67%(9507种)物质无遗传毒性,0.5%(103种)评分结果不确定,43.93%(8949种)被预测具有遗传毒性,8.9%(1812种)具有遗传毒性。对于238种POC化学品中的225种能够做出遗传毒性的总体判定。其中,40.44%(91种)无遗传毒性,2.67%(6种)结果不确定,6.22%(14种)被预测具有遗传毒性,50.67%(114种)具有遗传毒性。该方法有望作为一种从遗传毒性和致癌性角度识别优先排序潜在候选物的手段。

相似文献

4
Integrated approach to testing and assessment for predicting rodent genotoxic carcinogenicity.
J Appl Toxicol. 2016 Dec;36(12):1536-1550. doi: 10.1002/jat.3338. Epub 2016 May 25.
6
Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans.
Food Chem Toxicol. 2013 Oct;60:550-62. doi: 10.1016/j.fct.2013.08.020. Epub 2013 Aug 15.
7
Dynamically monitoring cellular γ-H2AX reveals the potential of carcinogenicity evaluation for genotoxic compounds.
Arch Toxicol. 2021 Nov;95(11):3559-3573. doi: 10.1007/s00204-021-03156-3. Epub 2021 Sep 12.
8
Development of a genotoxicity/carcinogenicity assessment method by DNA adductome analysis.
Mutat Res Genet Toxicol Environ Mutagen. 2024 Oct;899:503821. doi: 10.1016/j.mrgentox.2024.503821. Epub 2024 Aug 13.
10
Evaluation of the Vitotox and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development.
Mutat Res. 2009 May 31;676(1-2):113-30. doi: 10.1016/j.mrgentox.2009.04.008. Epub 2009 Apr 22.

引用本文的文献

1
High-Throughput Transcriptomics Screen of ToxCast Chemicals in U-2 OS Cells.
Toxicol Appl Pharmacol. 2024 Oct;491:117073. doi: 10.1016/j.taap.2024.117073. Epub 2024 Aug 17.
2
Analysis of chemical structures and mutations detected by Salmonella TA98 and TA100.
Mutat Res. 2023 Jul-Dec;827:111838. doi: 10.1016/j.mrfmmm.2023.111838. Epub 2023 Sep 30.

本文引用的文献

3
Are all bacterial strains required by OECD mutagenicity test guideline TG471 needed?
Mutat Res Genet Toxicol Environ Mutagen. 2019 Dec;848:503081. doi: 10.1016/j.mrgentox.2019.503081. Epub 2019 Aug 9.
4
Genetic toxicology in silico protocol.
Regul Toxicol Pharmacol. 2019 Oct;107:104403. doi: 10.1016/j.yrtph.2019.104403. Epub 2019 Jun 11.
5
The OECD QSAR Toolbox Starts Its Second Decade.
Methods Mol Biol. 2018;1800:55-77. doi: 10.1007/978-1-4939-7899-1_2.
6
The CompTox Chemistry Dashboard: a community data resource for environmental chemistry.
J Cheminform. 2017 Nov 28;9(1):61. doi: 10.1186/s13321-017-0247-6.
7
Current and Future Perspectives on the Development, Evaluation, and Application of in Silico Approaches for Predicting Toxicity.
Chem Res Toxicol. 2016 Apr 18;29(4):438-51. doi: 10.1021/acs.chemrestox.5b00388. Epub 2016 Jan 6.
8
Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis.
Environ Health Perspect. 2016 Jun;124(6):713-21. doi: 10.1289/ehp.1509912. Epub 2015 Nov 24.
9
Comparison of in silico models for prediction of mutagenicity.
J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2013;31(1):45-66. doi: 10.1080/10590501.2013.763576.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验