Suppr超能文献

生成式模型在医学图像中的系统比较。

A systematic comparison of generative models for medical images.

机构信息

Artificial Intelligence in Medical Imaging, Lübeck, Germany.

Department of Radiology, University of Calgary, Calgary, Canada.

出版信息

Int J Comput Assist Radiol Surg. 2022 Jul;17(7):1213-1224. doi: 10.1007/s11548-022-02567-6. Epub 2022 Feb 7.

Abstract

PURPOSE

This work aims for a systematic comparison of popular shape and appearance models. Here, two statistical and four deep-learning-based shape and appearance models are compared and evaluated in terms of their expressiveness described by their generalization ability and specificity as well as further properties like input data format, interpretability and latent space distribution and dimension.

METHODS

Classical shape models and their locality-based extension are considered next to autoencoders, variational autoencoders, diffeomorphic autoencoders and generative adversarial networks. The approaches are evaluated in terms of generalization ability, specificity and likeness depending on the amount of training data. Furthermore, various latent space metrics are presented in order to capture further major characteristics of the models.

RESULTS

The experimental setup showed that locality statistical shape models yield best results in terms of generalization ability for 2D and 3D shape modeling. However, the deep learning approaches show strongly improved specificity. In the case of simultaneous shape and appearance modeling, the neural networks are able to generate more realistic and diverse appearances. A major drawback of the deep-learning models is, however, their impaired interpretability and ambiguity of the latent space.

CONCLUSIONS

It can be concluded that for applications not requiring particularly good specificity, shape modeling can be reliably established with locality-based statistical shape models, especially when it comes to 3D shapes. However, deep learning approaches are more worthwhile in terms of appearance modeling.

摘要

目的

本工作旨在对流行的形状和外观模型进行系统比较。在这里,比较并评估了两种统计和四种基于深度学习的形状和外观模型,从其概括能力和特异性描述了它们的表现力,以及进一步的特性,如输入数据格式、可解释性以及潜在空间分布和维度。

方法

接下来考虑了经典形状模型及其基于局部性的扩展,以及自动编码器、变分自动编码器、微分自动编码器和生成对抗网络。根据训练数据的数量,评估了这些方法在概括能力、特异性和相似性方面的表现。此外,还提出了各种潜在空间指标,以便捕捉模型的进一步主要特征。

结果

实验设置表明,局部统计形状模型在 2D 和 3D 形状建模方面具有最佳的概括能力。然而,深度学习方法在特异性方面有了显著的提高。在同时进行形状和外观建模的情况下,神经网络能够生成更逼真和多样化的外观。然而,深度学习模型的一个主要缺点是其可解释性较差,潜在空间也存在歧义。

结论

可以得出结论,对于不需要特别好的特异性的应用,基于局部性的统计形状模型可以可靠地建立形状建模,特别是在涉及 3D 形状的情况下。然而,在外观建模方面,深度学习方法更有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fc7/9206635/315ddb7b343c/11548_2022_2567_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验