Suppr超能文献

结构化液晶弹性体的协同能量吸收机制

Synergistic Energy Absorption Mechanisms of Architected Liquid Crystal Elastomers.

作者信息

Jeon Seung-Yeol, Shen Beijun, Traugutt Nicholas A, Zhu Zeyu, Fang Lichen, Yakacki Christopher M, Nguyen Thao D, Kang Sung Hoon

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.

出版信息

Adv Mater. 2022 Apr;34(14):e2200272. doi: 10.1002/adma.202200272. Epub 2022 Mar 1.

Abstract

A unique rate-dependent energy absorption behavior of liquid crystal elastomer (LCE)-based architected materials is reported. The architected materials consist of repeating unit cells of bistable tilted LCE beams sandwiched between stiff supports. The viscoelastic behavior of the LCE causes the energy absorption to increase with strain rate according to a power-law relationship, which can be modulated by changing the degree of mesogen alignment and the loading direction relative to the director. For a strain rate of 600 s , the unit cell exhibits up to a 5 MJ m energy absorption density, which is two orders of magnitude higher than the same structure fabricated from poly(dimethylsiloxane) elastomer and is comparable to the dissipation from irreversible plastic deformation exhibited by denser metals. For a multilayered structure of unit cells, nonuniform buckling of the different layers produces additional viscoelastic dissipation. This synergistic interaction between viscoelastic dissipation and snap-through buckling causes the energy absorption density to increase with the number of layers. The sequence of cell collapse can be controlled by grading the beam thickness to further promote viscous dissipation and enhance the energy absorption density. It is envisioned that the study can contribute to the development of lightweight extreme energy-absorbing metamaterials.

摘要

据报道,基于液晶弹性体(LCE)的结构化材料具有独特的速率依赖性能量吸收行为。这些结构化材料由夹在刚性支撑之间的双稳态倾斜LCE梁的重复单元组成。LCE的粘弹性行为导致能量吸收根据幂律关系随应变率增加,这可以通过改变介晶排列程度和相对于指向矢的加载方向来调节。对于600 s⁻¹的应变率,单元展现出高达5 MJ m⁻³的能量吸收密度,这比由聚(二甲基硅氧烷)弹性体制备的相同结构高出两个数量级,并且与更致密金属所表现出的不可逆塑性变形耗散相当。对于单元的多层结构,不同层的不均匀屈曲会产生额外的粘弹性耗散。这种粘弹性耗散和快速屈曲之间的协同相互作用导致能量吸收密度随层数增加。单元坍塌的顺序可以通过对梁厚度进行分级来控制,以进一步促进粘性耗散并提高能量吸收密度。预计该研究可为轻质极端能量吸收超材料的发展做出贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验