Han Yang, Zheng Hongbing, Liu Yingxue, Wang Min, Wang Jiadong, Xie Qing, Jing Shuailin, Qin Xuan, Zhang Liqun
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China.
ACS Omega. 2024 Mar 13;9(12):13897-13905. doi: 10.1021/acsomega.3c08996. eCollection 2024 Mar 26.
Shock-absorbing materials play a vital role in various industrial sectors, including construction and transportation. Among these materials, natural rubber (NR) stands out due to its exceptional elastic and mechanical properties, coupled with its robust crack resistance. Nevertheless, with the rising demand for enhanced damping capacities, there is a need to further optimize the damping performance of NR. One direct approach is to blend it with high-damping rubber. Butyl rubber (IIR) is a prominent member of the high-damping rubber category. Integrating IIR effectively with the NR, however, presents challenges. These challenges arise from IIR's inherent characteristics, such as its low unsaturation, slower vulcanization rate, and restricted compatibility with NR. Addressing these challenges, our study employed isoprene and isobutene to synthesize a variant of butyl rubber with a higher degree of unsaturation-achieving an unsaturation level between 4 and 6 mol %. Notably, this heightened unsaturation significantly expedited the curing time of IIR and facilitated the concurrent vulcanization of both IIR and NR. Utilizing atomic force microscopy, we observed that the introduction of unsaturated double bonds ameliorated the compatibility between NR and IIR, leading to an interfacial region extending up to 1000 nm. Our tests using a dynamic mechanical analyzer and rubber processing analyzer demonstrated the material's damping temperature range. Furthermore, there was a noticeable rise in the loss factor (tan δ) at ambient temperature, which remains over 0.1 across both a frequency window of 0.2 to 5 Hz and a strain spectrum of 10 to 200%. This tan δ enhancement ensured the potential of these rubber composites for shock-absorbing applications.
减震材料在包括建筑和运输在内的各个工业领域中发挥着至关重要的作用。在这些材料中,天然橡胶(NR)因其出色的弹性和机械性能以及强大的抗裂性而脱颖而出。然而,随着对增强阻尼能力需求的不断增加,有必要进一步优化天然橡胶的阻尼性能。一种直接的方法是将其与高阻尼橡胶共混。丁基橡胶(IIR)是高阻尼橡胶类别中的突出成员。然而,有效地将丁基橡胶与天然橡胶结合存在挑战。这些挑战源于丁基橡胶的固有特性,例如其低不饱和度、较慢的硫化速率以及与天然橡胶的有限相容性。为了解决这些挑战,我们的研究采用异戊二烯和异丁烯合成了一种不饱和度更高的丁基橡胶变体,其不饱和度达到4至6摩尔%。值得注意的是,这种更高的不饱和度显著加快了丁基橡胶的固化时间,并促进了丁基橡胶和天然橡胶的同时硫化。利用原子力显微镜,我们观察到不饱和双键的引入改善了天然橡胶和丁基橡胶之间的相容性,导致界面区域扩展到1000纳米。我们使用动态力学分析仪和橡胶加工分析仪进行的测试表明了该材料的阻尼温度范围。此外,在环境温度下损耗因子(tan δ)有明显上升,在0.2至5赫兹的频率窗口和10至200%的应变谱范围内均保持超过0.1。这种tan δ的提高确保了这些橡胶复合材料在减震应用中的潜力。