Suppr超能文献

深度UCT:用于改进超声层析成像的复杂级联深度学习网络。

DeepUCT: Complex cascaded deep learning network for improved ultrasound tomography.

机构信息

School of Electrical Engineering and Computer Science, Penn State, University Park, PA 16802 United States of America.

出版信息

Phys Med Biol. 2022 Mar 11;67(6). doi: 10.1088/1361-6560/ac5296.

Abstract

Ultrasound computed tomography is an inexpensive and radiation-free medical imaging technique used to quantify the tissue acoustic properties for advanced clinical diagnosis. Image reconstruction in ultrasound tomography is often modeled as an optimization scheme solved by iterative methods like full-waveform inversion. These iterative methods are computationally expensive, while the optimization problem is ill-posed and nonlinear. To address this problem, we propose to use deep learning to overcome the computational burden and ill-posedness, and achieve near real-time image reconstruction in ultrasound tomography. We aim to directly learn the mapping from the recorded time-series sensor data to a spatial image of acoustical properties. To accomplish this, we develop a deep learning model using two cascaded convolutional neural networks with an encoder-decoder architecture. We achieve a good representation by first extracting the intermediate mapping-knowledge and later utilizing this knowledge to reconstruct the image. This approach is evaluated on synthetic phantoms where simulated ultrasound data are acquired from a ring of transducers surrounding the region of interest. The measurement data is acquired by forward modeling the wave equation using the k-wave toolbox. Our simulation results demonstrate that our proposed deep-learning method is robust to noise and significantly outperforms the state-of-the-art traditional iterative method both quantitatively and qualitatively. Furthermore, our model takes substantially less computational time than the conventional full-wave inversion method.

摘要

超声计算机层析成像术是一种廉价且无辐射的医学成像技术,用于定量组织声学特性以进行高级临床诊断。超声层析成像中的图像重建通常被建模为通过全波形反演等迭代方法求解的优化方案。这些迭代方法计算成本高,而优化问题是不适定的和非线性的。为了解决这个问题,我们提出使用深度学习来克服计算负担和不适定性,并实现超声层析成像中的近实时图像重建。我们的目标是直接学习从记录的时间序列传感器数据到声学分空间图像的映射。为了实现这一目标,我们使用具有编码器-解码器架构的两个级联卷积神经网络开发了一种深度学习模型。我们首先通过提取中间映射知识来实现良好的表示,然后利用该知识来重建图像。这种方法在模拟体模上进行了评估,在模拟体模中,从环绕感兴趣区域的换能器环中获取模拟超声数据。使用 k 波工具箱通过正向建模波动方程来获取测量数据。我们的模拟结果表明,我们提出的深度学习方法对噪声具有鲁棒性,并且在定量和定性方面都明显优于最先进的传统迭代方法。此外,我们的模型比传统的全波反演方法需要的计算时间少得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验