Biochemistry Group, Vineland Research and Innovation Centre, Vineland Station, ON LOR 2E0, Canada.
Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2118676119.
Tomato () produces a wide range of volatile chemicals during fruit ripening, generating a distinct aroma and contributing to the overall flavor. Among these volatiles are several aromatic and aliphatic nitrogen-containing compounds for which the biosynthetic pathways are not known. While nitrogenous volatiles are abundant in tomato fruit, their content in fruits of the closely related species of the tomato clade is highly variable. For example, the green-fruited species are nearly devoid, while the red-fruited species and accumulate high amounts. Using an introgression population derived from , we identified a locus essential for the production of all the detectable nitrogenous volatiles in tomato fruit. Silencing of the underlying gene (;) in transgenic plants abolished production of aliphatic and aromatic nitrogenous volatiles in ripe fruit, and metabolomic analysis of these fruit revealed the accumulation of 2-isobutyl-tetrahydrothiazolidine-4-carboxylic acid, a known conjugate of cysteine and 3-methylbutanal. Biosynthetic incorporation of stable isotope-labeled precursors into 2-isobutylthiazole and 2-phenylacetonitrile confirmed that cysteine provides the nitrogen atom for all nitrogenous volatiles in tomato fruit. plants expressing SlTNH1 readily transformed synthetic 2-substituted tetrahydrothiazolidine-4-carboxylic acid substrates into a mixture of the corresponding 2-substituted oxime, nitro, and nitrile volatiles. Distinct from other known flavin-dependent monooxygenase enzymes in plants, this tetrahydrothiazolidine-4-carboxylic acid -hydroxylase catalyzes sequential hydroxylations. Elucidation of this pathway is a major step forward in understanding and ultimately improving tomato flavor quality.
番茄在果实成熟过程中会产生一系列挥发性化学物质,形成独特的香气,并为整体风味做出贡献。这些挥发性物质中包括几种芳香族和脂肪族含氮化合物,目前尚不清楚其生物合成途径。尽管含氮挥发物在番茄果实中含量丰富,但在番茄分支的近缘种果实中含量差异很大。例如,绿色果实的 几乎不含,而红色果实的 和 则积累了大量的氮挥发物。我们利用源自 的导入群体,鉴定出一个对番茄果实中所有可检测到的含氮挥发物产生至关重要的基因座。该基因( )在转基因植物中的沉默导致成熟果实中所有脂肪族和芳香族含氮挥发物的产生被完全抑制,对这些果实的代谢组学分析显示,2-异丁基四氢噻唑-4-羧酸(一种半胱氨酸和 3-甲基丁醛的已知结合物)的积累。稳定同位素标记前体在 2-异丁基噻唑和 2-苯乙腈中的生物合成掺入证实,半胱氨酸为番茄果实中的所有含氮挥发物提供氮原子。表达 SlTNH1 的 植物容易将合成的 2-取代四氢噻唑-4-羧酸底物转化为相应的 2-取代肟、硝基和腈类挥发性混合物。与植物中其他已知的黄素依赖性单加氧酶不同,这种四氢噻唑-4-羧酸 -羟化酶催化连续的羟化反应。该途径的阐明是深入了解和最终改善番茄风味质量的重要一步。