Gonda Itay, Davidovich-Rikanati Rachel, Bar Einat, Lev Shery, Jhirad Pliaa, Meshulam Yuval, Wissotsky Guy, Portnoy Vitaly, Burger Joseph, Schaffer Arthur A, Tadmor Yaakov, Giovannoni James J, Fei Zhangjun, Fait Aaron, Katzir Nurit, Lewinsohn Efraim
Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
Phytochemistry. 2018 Apr;148:122-131. doi: 10.1016/j.phytochem.2017.12.018. Epub 2018 Feb 20.
Studies on the active pathways and the genes involved in the biosynthesis of L-phenylalanine-derived volatiles in fleshy fruits are sparse. Melon fruit rinds converted stable-isotope labeled L-phe into more than 20 volatiles. Phenylpropanes, phenylpropenes and benzenoids are apparently produced via the well-known phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL) and being (E)-cinnamic acid a key intermediate. Phenethyl derivatives seemed to be derived from L-phe via a separate biosynthetic route not involving (E)-cinnamic acid and PAL. To explore for a biosynthetic route to (E)-cinnamaldehyde in melon rinds, soluble protein cell-free extracts were assayed with (E)-cinnamic acid, CoA, ATP, NADPH and MgSO, producing (E)-cinnamaldehyde in vitro. In this context, we characterized CmCNL, a gene encoding for (E)-cinnamic acid:coenzyme A ligase, inferred to be involved in the biosynthesis of (E)-cinnamaldehyde. Additionally we describe CmBAMT, a SABATH gene family member encoding a benzoic acid:S-adenosyl-L-methionine carboxyl methyltransferase having a role in the accumulation of methyl benzoate. Our approach leads to a more comprehensive understanding of L-phe metabolism into aromatic volatiles in melon fruit.
关于肉质果实中L-苯丙氨酸衍生挥发物生物合成所涉及的活性途径和基因的研究很少。甜瓜果皮将稳定同位素标记的L-苯丙氨酸转化为20多种挥发物。苯丙烷类、苯丙烯类和苯类化合物显然是通过涉及苯丙氨酸解氨酶(PAL)的著名苯丙烷途径产生的,且(E)-肉桂酸是关键中间体。苯乙衍生物似乎是通过一条不涉及(E)-肉桂酸和PAL的独立生物合成途径从L-苯丙氨酸衍生而来。为了探索甜瓜果皮中(E)-肉桂醛的生物合成途径,用(E)-肉桂酸、辅酶A、ATP、NADPH和MgSO对可溶性蛋白质无细胞提取物进行了检测,在体外产生了(E)-肉桂醛。在此背景下,我们对CmCNL进行了表征,它是一个编码(E)-肉桂酸:辅酶A连接酶的基因,推测参与了(E)-肉桂醛的生物合成。此外,我们还描述了CmBAMT,它是SABATH基因家族的一个成员,编码一种苯甲酸:S-腺苷-L-甲硫氨酸羧基甲基转移酶,在苯甲酸甲酯的积累中起作用。我们的方法使人们对甜瓜果实中L-苯丙氨酸代谢为芳香挥发物有了更全面的了解。