Suppr超能文献

回音壁模式光等离子体微腔:从先进的单分子传感器和微激光器到合成生物学中的应用

Whispering-Gallery Mode Optoplasmonic Microcavities: From Advanced Single-Molecule Sensors and Microlasers to Applications in Synthetic Biology.

作者信息

Houghton Matthew C, Kashanian Samir Vartabi, Derrien Thomas L, Masuda Koji, Vollmer Frank

机构信息

Department of Physics and Astronomy, University of Exeter, Exeter Devon EX4 4QL, United Kingdom.

Department of Life Sciences, University of Bath, Bath BA2 7AX, United Kingdom.

出版信息

ACS Photonics. 2024 Feb 3;11(3):892-903. doi: 10.1021/acsphotonics.3c01570. eCollection 2024 Mar 20.

Abstract

Optical microcavities, specifically, whispering-gallery mode (WGM) microcavities, with their remarkable sensitivity to environmental changes, have been extensively employed as biosensors, enabling the detection of a wide range of biomolecules and nanoparticles. To push the limits of detection down to the most sensitive single-molecule level, plasmonic nanorods are strategically introduced to enhance the evanescent fields of WGM microcavities. This advancement of optoplasmonic WGM sensors allows for the detection of single molecules of a protein, conformational changes, and even atomic ions, marking significant contributions in single-molecule sensing. This Perspective discusses the exciting research prospects in optoplasmonic WGM sensing of single molecules, including the study of enzyme thermodynamics and kinetics, the emergence of thermo-optoplasmonic sensing, the ultrasensitive single-molecule sensing on WGM microlasers, and applications in synthetic biology.

摘要

光学微腔,特别是回音壁模式(WGM)微腔,因其对环境变化具有显著的敏感性,已被广泛用作生物传感器,能够检测多种生物分子和纳米颗粒。为了将检测极限降低到最灵敏的单分子水平,人们战略性地引入了等离子体纳米棒,以增强WGM微腔的倏逝场。这种光等离子体WGM传感器的进步使得能够检测蛋白质的单分子、构象变化,甚至原子离子,在单分子传感方面做出了重大贡献。本观点讨论了光等离子体WGM单分子传感中令人兴奋的研究前景,包括酶热力学和动力学的研究、热光等离子体传感的出现、WGM微激光上的超灵敏单分子传感以及在合成生物学中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d68/10958601/c625b5f54fc4/ph3c01570_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验