Suppr超能文献

用于碱性介质中析氢反应的铜氮电催化剂的开发。

Development of CuN electrocatalyst for hydrogen evolution reaction in alkaline medium.

作者信息

Sajeev Aparna, Paul Aleena Mary, Nivetha Ravi, Gothandapani Kannan, Gopal Tamil Selvi, Jacob George, Muthuramamoorty Muthumareeswaran, Pandiaraj Saravanan, Alodhayb Abdullah, Kim Soo Young, Van Le Quyet, Show Pau Loke, Jeong Soon Kwan, Grace Andrews Nirmala

机构信息

Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, India.

College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.

出版信息

Sci Rep. 2022 Feb 7;12(1):2004. doi: 10.1038/s41598-022-05953-x.

Abstract

A wide variety of electrocatalysts has been evolved for hydrogen evolution reaction (HER) and it is reasonable to carry out HER with low cost electrocatalyst and a good efficiency. In this study, CuN was synthesized by nitridation of CuO and further utilized as an electrocatalyst towards HER. The developed CuN electrocatalyst was tested and results showed a low overpotential and moderate Tafel slope value (overpotential: 149.18 mV and Tafel slope 63.28 mV/dec at 10 mA/cm) in alkaline medium with a charge transfer resistance value as calculated from electrochemical impendence spectroscopy being 1.44 Ω. Further from the experimental results, it was observed that the reaction kinetics was governed by Volmer-Heyrovsky mechanism. Moreover, CuN has shown an improved rate of electron transfer and enhanced accessible active sites, due to its structural properties and electrical conductivity. Thus the overall results show an excellent electrochemical performance, leading to a new pathway for the synthesis of low cost electrocatalyst for energy conversion and storage.

摘要

人们已经开发出各种各样用于析氢反应(HER)的电催化剂,使用低成本且高效的电催化剂来进行析氢反应是合理的。在本研究中,通过对CuO进行氮化合成了CuN,并进一步将其用作析氢反应的电催化剂。对所制备的CuN电催化剂进行了测试,结果表明,在碱性介质中,其具有较低的过电位和适中的塔菲尔斜率值(过电位:149.18 mV,在10 mA/cm²时塔菲尔斜率为63.28 mV/dec),通过电化学阻抗谱计算得到的电荷转移电阻值为1.44 Ω。从实验结果进一步观察到,反应动力学受Volmer-Heyrovsky机理控制。此外,由于其结构特性和电导率,CuN显示出改善的电子转移速率和更多可及的活性位点。因此,总体结果显示出优异的电化学性能,为合成用于能量转换和存储的低成本电催化剂开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1b2/8821592/7ac0663e4376/41598_2022_5953_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验