Ahmed Abu Talha Aqueel, Cho Sangeun, Im Hyunsik, Jana Atanu
Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.
Nanomaterials (Basel). 2024 Dec 3;14(23):1941. doi: 10.3390/nano14231941.
Using electrocatalytic water reduction to produce hydrogen fuel offers significant potential for clean energy, yet its large-scale adoption depends on developing cost-effective, non-precious, and efficient catalysts to replace expensive Pt-based state-of-the-art HER catalysts. The catalytic HER performance of an active catalyst largely depends on the available catalytic active sites, conductivity, and intrinsic electrochemical kinetics, all of which can be altered by incorporating a heteroatom into the active catalyst structure. Herein, we synthesized a unique nitrogen-doped CuO@CuS (NCOS) core-shell-structured catalyst through a facile hydrothermal process followed by an efficacious nitrogenation process, and its electrochemical performance for the HER was systematically analyzed. The NCOS core-shell-structured catalyst exhibits a reduced overpotential (55 mV) and Tafel slope (107 mV dec) compared to the pure CuS (CS; 179 mV and 201 mV dec) catalyst at a current density of 10 mA cm. Moreover, the NCOS core-shell-structured catalyst demonstrates excellent endurance for up to 50 h of chronopotentiometric testing at a driving current density rate of 10 and 100 mA cm. This excellent catalytic HER activity is a result of an increased electron transfer rate and a greater number of accessible active sites, attributed to a change in structural properties and the high electronic conductivity aroused from nitrogen incorporation, as evidenced from the and EIS curve analyses.
利用电催化水还原制氢燃料具有巨大的清洁能源潜力,然而其大规模应用依赖于开发具有成本效益、非贵金属且高效的催化剂,以取代昂贵的铂基最先进析氢反应(HER)催化剂。活性催化剂的HER催化性能很大程度上取决于可用的催化活性位点、电导率和本征电化学动力学,通过将杂原子引入活性催化剂结构,所有这些都可以改变。在此,我们通过简便的水热法随后进行有效的氮化过程,合成了一种独特的氮掺杂CuO@CuS(NCOS)核壳结构催化剂,并系统地分析了其HER的电化学性能。在电流密度为10 mA cm时,与纯CuS(CS;179 mV和201 mV dec)催化剂相比,NCOS核壳结构催化剂表现出降低的过电位(55 mV)和塔菲尔斜率(107 mV dec)。此外,NCOS核壳结构催化剂在驱动电流密度为10和100 mA cm时,经过长达50 h的计时电位测试,表现出优异的耐久性。这种优异的HER催化活性是电子转移速率增加和可及活性位点数量增多的结果,这归因于结构性质的变化以及氮掺杂引起的高电子电导率,这从 和电化学阻抗谱(EIS)曲线分析中得到证明。