文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

次声和低频音对响度和畸变产物耳声发射的相位抑制的频谱范围。

The Spectral Extent of Phasic Suppression of Loudness and Distortion-Product Otoacoustic Emissions by Infrasound and Low-Frequency Tones.

机构信息

UCL Ear Institute, London, WC1X8EE, UK.

Escuela de Ingeniería en Sonido y Acústica, Universidad de Las Américas, Quito, EC170125, Ecuador.

出版信息

J Assoc Res Otolaryngol. 2022 Apr;23(2):167-181. doi: 10.1007/s10162-021-00830-2. Epub 2022 Feb 7.


DOI:10.1007/s10162-021-00830-2
PMID:35132510
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8964881/
Abstract

We investigated the effect of a biasing tone close to 5, 15, or 30 Hz on the response to higher-frequency probe tones, behaviorally, and by measuring distortion-product otoacoustic emissions (DPOAEs). The amplitude of the biasing tone was adjusted for criterion suppression of cubic DPOAE elicited by probe tones presented between 0.7 and 8 kHz, or criterion loudness suppression of a train of tone-pip probes in the range 0.125-8 kHz. For DPOAEs, the biasing-tone level for criterion suppression increased with probe-tone frequency by 8-9 dB/octave, consistent with an apex-to-base gradient of biasing-tone-induced basilar membrane displacement, as we verified by computational simulation. In contrast, the biasing-tone level for criterion loudness suppression increased with probe frequency by only 1-3 dB/octave, reminiscent of previously published data on low-side suppression of auditory nerve responses to characteristic frequency tones. These slopes were independent of biasing-tone frequency, but the biasing-tone sensation level required for criterion suppression was ~ 10 dB lower for the two infrasound biasing tones than for the 30-Hz biasing tone. On average, biasing-tone sensation levels as low as 5 dB were sufficient to modulate the perception of higher frequency sounds. Our results are relevant for recent debates on perceptual effects of environmental noise with very low-frequency content and might offer insight into the mechanism underlying low-side suppression.

摘要

我们研究了接近 5、15 或 30 Hz 的偏置音对高频探测音的反应的影响,通过行为和测量畸变产物耳声发射 (DPOAE) 来实现。偏置音的幅度通过调整来实现对 0.7 至 8 kHz 之间的探测音引起的立方 DPOAE 的准则抑制,或者对 0.125 至 8 kHz 范围内的音调探测探针的音调和调谐探测的准则响度抑制。对于 DPOAE,准则抑制的偏置音水平随探测音频率以 8-9 dB/octave 的速率增加,与我们通过计算模拟验证的偏置音诱导基底膜位移的顶点到基底梯度一致。相比之下,准则响度抑制的偏置音水平仅随探测音频率增加 1-3 dB/octave,与先前发表的关于听神经对特征频率音的响应的低侧抑制的研究数据相似。这些斜率与偏置音频率无关,但对于两个次声偏置音,准则抑制所需的偏置音感觉水平比 30 Hz 偏置音低约 10 dB。平均而言,低至 5 dB 的偏置音感觉水平足以调节对高频声音的感知。我们的结果与最近关于具有极低频率成分的环境噪声的感知效应的辩论有关,并且可能为低侧抑制的机制提供了一些见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/cb884daf4841/10162_2021_830_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/fae080af81e0/10162_2021_830_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/b9aed9b426e7/10162_2021_830_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/f0789385e42e/10162_2021_830_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/3f062947aca0/10162_2021_830_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/cb884daf4841/10162_2021_830_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/fae080af81e0/10162_2021_830_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/b9aed9b426e7/10162_2021_830_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/f0789385e42e/10162_2021_830_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/3f062947aca0/10162_2021_830_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/8964881/cb884daf4841/10162_2021_830_Fig5_HTML.jpg

相似文献

[1]
The Spectral Extent of Phasic Suppression of Loudness and Distortion-Product Otoacoustic Emissions by Infrasound and Low-Frequency Tones.

J Assoc Res Otolaryngol. 2022-4

[2]
Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae.

Hear Res. 1993-3

[3]
Impact of infrasound on the human cochlea.

Hear Res. 2007-11

[4]
Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.

Hear Res. 2015-9

[5]
Weakened Cochlear Nonlinearity During Human Aging and Perceptual Correlates.

Ear Hear. 2021

[6]
Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.

J Acoust Soc Am. 2003-9

[7]
Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition.

Hear Res. 2005-5

[8]
Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.

Hear Res. 2007-3

[9]
Temporal aspects of suppression in distortion-product otoacoustic emissions.

J Acoust Soc Am. 2011-5

[10]
2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level.

Audiol Neurootol. 1996

引用本文的文献

[1]
Intense low-frequency sound transiently biases human sound lateralisation.

PLoS One. 2025-6-30

本文引用的文献

[1]
Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.

J Neurosci. 2019-1-16

[2]
Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae.

Elife. 2018-9-5

[3]
Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea.

Nat Commun. 2018-8-3

[4]
Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.

Hear Res. 2016-11

[5]
Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.

J Acoust Soc Am. 2013-3

[6]
How are inner hair cells stimulated? Evidence for multiple mechanical drives.

Hear Res. 2012-8-24

[7]
Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans.

Hear Res. 2012-3-23

[8]
Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave.

J Assoc Res Otolaryngol. 2011-10-15

[9]
Responses of the ear to low frequency sounds, infrasound and wind turbines.

Hear Res. 2010-6-16

[10]
Low-frequency characteristics of human and guinea pig cochleae.

J Acoust Soc Am. 2007-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索