Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
Hear Res. 2012 Oct;292(1-2):35-50. doi: 10.1016/j.heares.2012.08.005. Epub 2012 Aug 24.
Recent studies indicate that the gap over outer hair cells (OHCs) between the reticular lamina (RL) and the tectorial membrane (TM) varies cyclically during low-frequency sounds. Variation in the RL-TM gap produces radial fluid flow in the gap that can drive inner hair cell (IHC) stereocilia. Analysis of RL-TM gap changes reveals three IHC drives in addition to classic SHEAR. For upward basilar-membrane (BM) motion, IHC stereocilia are deflected in the excitatory direction by SHEAR and OHC-MOTILITY, but in the inhibitory direction by TM-PUSH and CILIA-SLANT. Upward BM motion causes OHC somatic contraction which tilts the RL, compresses the RL-TM gap over IHCs and expands the RL-TM gap over OHCs, thereby producing an outward (away from the IHCs) radial fluid flow which is the OHC-MOTILITY drive. For upward BM motion, the force that moves the TM upward also compresses the RL-TM gap over OHCs causing inward radial flow past IHCs which is the TM-PUSH drive. Motions that produce large tilting of OHC stereocilia squeeze the supra-OHC RL-TM gap and caused inward radial flow past IHCs which is the CILIA-SLANT drive. Combinations of these drives explain: (1) the reversal at high sound levels of auditory nerve (AN) initial peak (ANIP) responses to clicks, and medial olivocochlear (MOC) inhibition of ANIP responses below, but not above, the ANIP reversal, (2) dips and phase reversals in AN responses to tones in cats and chinchillas, (3) hypersensitivity and phase reversals in tuning-curve tails after OHC ablation, and (4) MOC inhibition of tail-frequency AN responses. The OHC-MOTILITY drive provides another mechanism, in addition to BM motion amplification, that uses active processes to enhance the output of the cochlea. The ability of these IHC drives to explain previously anomalous data provides strong, although indirect, evidence that these drives are significant and presents a new view of how the cochlea works at frequencies below 3 kHz.
最近的研究表明,在低频声音期间,网状层 (RL) 和盖膜 (TM) 之间的外毛细胞 (OHC) 间隙会周期性地变化。RL-TM 间隙的变化会在间隙中产生径向流体流动,从而驱动内毛细胞 (IHC) 静纤毛。对 RL-TM 间隙变化的分析揭示了除经典 SHEAR 之外的三种 IHC 驱动。对于向上的基底膜 (BM) 运动,IHC 静纤毛受到 SHEAR 和 OHC-MOTILITY 的兴奋性偏转,但受到 TM-PUSH 和 CILIA-SLANT 的抑制性偏转。向上的 BM 运动导致 OHC 体收缩,使 RL 倾斜,压缩 IHC 上方的 RL-TM 间隙并扩展 OHC 上方的 RL-TM 间隙,从而产生向外(远离 IHC)的径向流体流动,这是 OHC-MOTILITY 驱动。对于向上的 BM 运动,向上移动 TM 的力也压缩 OHC 上方的 RL-TM 间隙,导致 IHC 旁的向内径向流动,这是 TM-PUSH 驱动。产生 OHC 静纤毛大倾斜的运动挤压超 OHC RL-TM 间隙,并导致 IHC 旁的向内径向流动,这是 CILIA-SLANT 驱动。这些驱动的组合解释了:(1) 听觉神经 (AN) 初始峰值 (ANIP) 对咔嗒声的反应在高音量下的反转,以及中橄榄耳蜗 (MOC) 在低于但不高于 ANIP 反转的情况下抑制 ANIP 反应,(2) 猫和龙猫对音调的 AN 反应中的下降和相位反转,(3) OHC 切除后调谐曲线尾部的超敏和相位反转,以及 (4) MOC 抑制尾部频率 AN 反应。除了 BM 运动放大之外,OHC-MOTILITY 驱动还提供了另一种机制,利用主动过程增强耳蜗的输出。这些 IHC 驱动能够解释先前异常的数据,这为这些驱动非常重要提供了强有力的证据,尽管是间接的,并且为耳蜗在低于 3 kHz 的频率下的工作方式提供了新的观点。