Suppr超能文献

基于深度学习的利用方向信息的快速 TOF-PET 图像重建。

Deep-learning-based fast TOF-PET image reconstruction using direction information.

机构信息

Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, 434-8601, Japan.

出版信息

Radiol Phys Technol. 2022 Mar;15(1):72-82. doi: 10.1007/s12194-022-00652-8. Epub 2022 Feb 8.

Abstract

Although deep learning for application in positron emission tomography (PET) image reconstruction has attracted the attention of researchers, the image quality must be further improved. In this study, we propose a novel convolutional neural network (CNN)-based fast time-of-flight PET (TOF-PET) image reconstruction method to fully utilize the direction information of coincidence events. The proposed method inputs view-grouped histo-images into a 3D CNN as a multi-channel image to use the direction information of such events. We evaluated the proposed method using Monte Carlo simulation data obtained from a digital brain phantom. Compared with a case without direction information, the peak signal-to-noise ratio and structural similarity were improved by 1.2 dB and 0.02, respectively, at a coincidence time resolution of 300 ps. The calculation times of the proposed method were significantly lower than those of a conventional iterative reconstruction. These results indicate that the proposed method improves both the speed and image quality of a TOF-PET image reconstruction.

摘要

尽管深度学习在正电子发射断层扫描(PET)图像重建中的应用引起了研究人员的关注,但图像质量仍需进一步提高。在这项研究中,我们提出了一种基于卷积神经网络(CNN)的快速飞行时间 PET(TOF-PET)图像重建方法,以充分利用符合事件的方向信息。该方法将视图分组的直方图图像作为多通道图像输入到 3D CNN 中,以利用这些事件的方向信息。我们使用从数字脑体模获得的蒙特卡罗模拟数据来评估所提出的方法。与没有方向信息的情况相比,在符合时间分辨率为 300 ps 的情况下,峰值信噪比和结构相似性分别提高了 1.2 dB 和 0.02。该方法的计算时间明显低于传统迭代重建的计算时间。这些结果表明,该方法提高了 TOF-PET 图像重建的速度和图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验