Central Research Laboratory, Hamamatsu Photonics K. K, 5000 Hirakuchi, Hamana-Ku, Hamamatsu, 434-8601, Japan.
Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho,Inage-Ku, Chiba, 263-8522, Japan.
Radiol Phys Technol. 2024 Sep;17(3):776-781. doi: 10.1007/s12194-024-00831-9. Epub 2024 Aug 3.
Deep learning, particularly convolutional neural networks (CNNs), has advanced positron emission tomography (PET) image reconstruction. However, it requires extensive, high-quality training datasets. Unsupervised learning methods, such as deep image prior (DIP), have shown promise for PET image reconstruction. Although DIP-based PET image reconstruction methods demonstrate superior performance, they involve highly time-consuming calculations. This study proposed a two-step optimization method to accelerate end-to-end DIP-based PET image reconstruction and improve PET image quality. The proposed two-step method comprised a pre-training step using conditional DIP denoising, followed by an end-to-end reconstruction step with fine-tuning. Evaluations using Monte Carlo simulation data demonstrated that the proposed two-step method significantly reduced the computation time and improved the image quality, thereby rendering it a practical and efficient approach for end-to-end DIP-based PET image reconstruction.
深度学习,特别是卷积神经网络(CNNs),已经推动了正电子发射断层扫描(PET)图像重建的发展。然而,它需要广泛的、高质量的训练数据集。无监督学习方法,如深度图像先验(DIP),已经显示出了在 PET 图像重建中的应用潜力。虽然基于 DIP 的 PET 图像重建方法表现出了优越的性能,但它们涉及到非常耗时的计算。本研究提出了一种两步优化方法,以加速基于 DIP 的端到端 PET 图像重建并提高 PET 图像质量。所提出的两步方法包括使用条件 DIP 去噪的预训练步骤,以及带有微调的端到端重建步骤。使用蒙特卡罗模拟数据的评估表明,所提出的两步方法显著减少了计算时间并提高了图像质量,因此是一种实用且高效的基于 DIP 的端到端 PET 图像重建方法。