Suppr超能文献

基于深度滤波的迭代重建在 TOF-PET 中应用列表模式数据的后投影滤波(BPF-like)重建方法。

A back-projection-and-filtering-like (BPF-like) reconstruction method with the deep learning filtration from listmode data in TOF-PET.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Department of Computer Science, Utah Valley University, Orem, Utah, USA.

出版信息

Med Phys. 2022 Apr;49(4):2531-2544. doi: 10.1002/mp.15520. Epub 2022 Feb 17.

Abstract

PURPOSE

The time-of-flight (TOF) information improves signal-to-noise ratio (SNR) for positron emission tomography (PET) imaging. Existing analytical algorithms for TOF PET usually follow a filtered back-projection process on reconstructing images from the sinogram data. This work aims to develop a back-projection-and-filtering-like (BPF-like) algorithm that reconstructs the TOF PET image directly from listmode data rapidly.

METHODS

We extended the 2D conventional non-TOF PET projection model to a TOF case, where projection data are represented as line integrals weighted by the one-dimensional TOF kernel along the projection direction. After deriving the central slice theorem and the TOF back-projection of listmode data, we designed a deep learning network with a modified U-net architecture to perform the spatial filtration (reconstruction filter). The proposed BP-Net method was validated via Monte Carlo simulations of TOF PET listmode data with three different time resolutions for two types of activity phantoms. The network was only trained on the simulated full-dose XCAT dataset and then evaluated on XCAT and Jaszczak data with different time resolutions and dose levels.

RESULTS

Reconstructed images show that when compared with the conventional BPF algorithm and the MLEM algorithm proposed for TOF PET, the proposed BP-Net method obtains better image quality in terms of peak signal-to-noise ratio, relative mean square error, and structure similarity index; besides, the reconstruction speed of the BP-Net is 1.75 times faster than BPF and 29.05 times faster than MLEM using 15 iterations. The results also indicate that the performance of the BP-Net degrades with worse time resolutions and lower tracer doses, but degrades less than BPF or MLEM reconstructions.

CONCLUSION

In this work, we developed an analytical-like reconstruction in the form of BPF with the reconstruction filtering operation performed via a deep network. The method runs even faster than the conventional BPF algorithm and provides accurate reconstructions from listmode data in TOF-PET, free of rebinning data to a sinogram.

摘要

目的

飞行时间(TOF)信息可提高正电子发射断层扫描(PET)成像的信噪比(SNR)。现有的 TOF PET 分析算法通常在从正弦图数据重建图像时遵循滤波反投影过程。本工作旨在开发一种类似于反投影和滤波(BPF-like)的算法,该算法可以从列表模式数据中快速直接重建 TOF PET 图像。

方法

我们将二维传统非 TOF PET 投影模型扩展到 TOF 情况,其中投影数据表示为沿投影方向加权一维 TOF 核的线积分。在推导出中心切片定理和列表模式数据的 TOF 反投影之后,我们设计了一个具有修改后的 U 型网络结构的深度学习网络,以执行空间滤波(重建滤波器)。通过对两种类型的活性体模的 TOF PET 列表模式数据进行蒙特卡罗模拟,验证了所提出的 BP-Net 方法。该网络仅在模拟的全剂量 XCAT 数据集上进行训练,然后在具有不同时间分辨率和剂量水平的 XCAT 和 Jaszczak 数据上进行评估。

结果

重建图像表明,与传统的 BPF 算法和针对 TOF PET 提出的 MLEM 算法相比,所提出的 BP-Net 方法在峰值信噪比、相对均方误差和结构相似性指数方面获得了更好的图像质量;此外,使用 15 次迭代时,BP-Net 的重建速度比 BPF 快 1.75 倍,比 MLEM 快 29.05 倍。结果还表明,BP-Net 的性能随着时间分辨率变差和示踪剂剂量降低而降低,但比 BPF 或 MLEM 重建的性能下降幅度小。

结论

在这项工作中,我们开发了一种类似于 BPF 的分析重建形式,其重建滤波操作通过深度网络执行。该方法甚至比传统的 BPF 算法运行速度更快,并且可以从 TOF-PET 的列表模式数据中提供准确的重建,无需将数据重新排序到正弦图中。

相似文献

本文引用的文献

4
PET Image Denoising Using a Deep Neural Network Through Fine Tuning.通过微调深度学习网络实现PET图像去噪
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):153-161. doi: 10.1109/TRPMS.2018.2877644. Epub 2018 Oct 23.
8
Radon Inversion via Deep Learning.基于深度学习的氡反演。
IEEE Trans Med Imaging. 2020 Jun;39(6):2076-2087. doi: 10.1109/TMI.2020.2964266. Epub 2020 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验