Suppr超能文献

SCANNER:一个用于单细胞 RNA-seq 数据注释、可视化和共享的网络平台。

SCANNER: a web platform for annotation, visualization and sharing of single cell RNA-seq data.

出版信息

Database (Oxford). 2022 Jan 17;2022. doi: 10.1093/database/baab086.

Abstract

In recent years, efficient scRNA-seq methods have been developed, enabling the transcriptome profiling of single cells massively in parallel. Meanwhile, its high dimensionality and complexity bring challenges to the data analysis and require extensive collaborations between biologists and bioinformaticians and/or biostatisticians. The communication between these two units demands a platform for easy data sharing and exploration. Here we developed Single-Cell Transcriptomics Annotated Viewer (SCANNER), as a public web resource for the scientific community, for sharing and analyzing scRNA-seq data in a collaborative manner. It is easy-to-use without requiring special software or extensive coding skills. Moreover, it equipped a real-time database for secure data management and enables an efficient investigation of the activation of gene sets on a single-cell basis. Currently, SCANNER hosts a database of 19 types of cancers and COVID-19, as well as healthy samples from lungs of smokers and non-smokers, human brain cells and peripheral blood mononuclear cells (PBMC). The database will be frequently updated with datasets from new studies. Using SCANNER, we identified a larger proportion of cancer-associated fibroblasts cells and more active fibroblast growth-related genes in melanoma tissues in female patients compared to male patients. Moreover, we found ACE2 is mainly expressed in lung pneumocytes, secretory cells and ciliated cells and differentially expressed in lungs of smokers and never smokers.

摘要

近年来,高效的 scRNA-seq 方法得以发展,能够大规模并行地对单细胞进行转录组分析。同时,其高度的维度和复杂性给数据分析带来了挑战,需要生物学家、生物信息学家和/或生物统计学家之间进行广泛的合作。这两个单位之间的沟通需要一个便于数据共享和探索的平台。在这里,我们开发了单细胞转录组学注释查看器(SCANNER),作为一个面向科学界的公共网络资源,用于以协作的方式共享和分析 scRNA-seq 数据。它易于使用,不需要特殊的软件或广泛的编码技能。此外,它配备了一个实时数据库,用于安全的数据管理,并能够高效地在单细胞基础上研究基因集的激活情况。目前,SCANNER 拥有 19 种癌症和 COVID-19 的数据库,以及来自吸烟者和不吸烟者肺部、人脑细胞和外周血单核细胞(PBMC)的健康样本。该数据库将定期更新来自新研究的数据集。使用 SCANNER,我们发现与男性患者相比,女性患者的黑色素瘤组织中与癌症相关的成纤维细胞比例更高,与成纤维细胞生长相关的基因也更为活跃。此外,我们发现 ACE2 主要在肺的肺上皮细胞、分泌细胞和纤毛细胞中表达,并在吸烟者和不吸烟者的肺部中表达不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/befe/9246089/fe364ec8a4d5/baab086f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验