Morgridge Institute for Research, Madison, WI, 53715, USA.
Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
BMC Bioinformatics. 2021 Feb 23;22(1):83. doi: 10.1186/s12859-021-04021-x.
Single-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene expression at the single-cell level and in so doing facilitates insight into and information about cellular heterogeneity within a tissue. This is especially important in cancer, where tumor and tumor microenvironment heterogeneity directly impact development, maintenance, and progression of disease. While publicly available scRNA-seq cancer data sets offer unprecedented opportunity to better understand the mechanisms underlying tumor progression, metastasis, drug resistance, and immune evasion, much of the available information has been underutilized, in part, due to the lack of tools available for aggregating and analysing these data.
We present CHARacterizing Tumor Subpopulations (CHARTS), a web application for exploring publicly available scRNA-seq cancer data sets in the NCBI's Gene Expression Omnibus. More specifically, CHARTS enables the exploration of individual gene expression, cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in subpopulations of cells across tumors and data sets. Along with the web application, we also make available the backend computational pipeline that was used to produce the analyses that are available for exploration in the web application.
CHARTS is an easy to use, comprehensive platform for exploring single-cell subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer data sets. CHARTS is freely available at charts.morgridge.org.
单细胞 RNA 测序 (scRNA-seq) 能够在单细胞水平上对全基因组基因表达进行分析,从而深入了解组织内的细胞异质性并获取相关信息。在癌症中,这一点尤为重要,因为肿瘤和肿瘤微环境的异质性直接影响疾病的发展、维持和进展。尽管公共 scRNA-seq 癌症数据集提供了前所未有的机会,可以更好地了解肿瘤进展、转移、耐药性和免疫逃逸的机制,但由于缺乏聚合和分析这些数据的工具,大部分可用信息尚未得到充分利用。
我们提出了 CHARTS(用于分析肿瘤亚群的工具),这是一个用于探索 NCBI 的基因表达综合数据库中公共 scRNA-seq 癌症数据集的网络应用程序。更具体地说,CHARTS 能够探索单个基因表达、细胞类型、恶性程度、差异表达基因和基因集富集结果在肿瘤和数据集的细胞亚群中的情况。除了网络应用程序外,我们还提供了用于生成可在网络应用程序中探索的分析的后端计算管道。
CHARTS 是一个易于使用的综合平台,可用于探索不断增长的公共 scRNA-seq 癌症数据集内肿瘤中的单细胞亚群。CHARTS 可在 charts.morgridge.org 免费获取。