Suppr超能文献

图表:一个用于描述和比较公共单细胞 RNA-seq 数据集肿瘤亚群的网络应用程序。

CHARTS: a web application for characterizing and comparing tumor subpopulations in publicly available single-cell RNA-seq data sets.

机构信息

Morgridge Institute for Research, Madison, WI, 53715, USA.

Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA.

出版信息

BMC Bioinformatics. 2021 Feb 23;22(1):83. doi: 10.1186/s12859-021-04021-x.

Abstract

BACKGROUND

Single-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene expression at the single-cell level and in so doing facilitates insight into and information about cellular heterogeneity within a tissue. This is especially important in cancer, where tumor and tumor microenvironment heterogeneity directly impact development, maintenance, and progression of disease. While publicly available scRNA-seq cancer data sets offer unprecedented opportunity to better understand the mechanisms underlying tumor progression, metastasis, drug resistance, and immune evasion, much of the available information has been underutilized, in part, due to the lack of tools available for aggregating and analysing these data.

RESULTS

We present CHARacterizing Tumor Subpopulations (CHARTS), a web application for exploring publicly available scRNA-seq cancer data sets in the NCBI's Gene Expression Omnibus. More specifically, CHARTS enables the exploration of individual gene expression, cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in subpopulations of cells across tumors and data sets. Along with the web application, we also make available the backend computational pipeline that was used to produce the analyses that are available for exploration in the web application.

CONCLUSION

CHARTS is an easy to use, comprehensive platform for exploring single-cell subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer data sets. CHARTS is freely available at charts.morgridge.org.

摘要

背景

单细胞 RNA 测序 (scRNA-seq) 能够在单细胞水平上对全基因组基因表达进行分析,从而深入了解组织内的细胞异质性并获取相关信息。在癌症中,这一点尤为重要,因为肿瘤和肿瘤微环境的异质性直接影响疾病的发展、维持和进展。尽管公共 scRNA-seq 癌症数据集提供了前所未有的机会,可以更好地了解肿瘤进展、转移、耐药性和免疫逃逸的机制,但由于缺乏聚合和分析这些数据的工具,大部分可用信息尚未得到充分利用。

结果

我们提出了 CHARTS(用于分析肿瘤亚群的工具),这是一个用于探索 NCBI 的基因表达综合数据库中公共 scRNA-seq 癌症数据集的网络应用程序。更具体地说,CHARTS 能够探索单个基因表达、细胞类型、恶性程度、差异表达基因和基因集富集结果在肿瘤和数据集的细胞亚群中的情况。除了网络应用程序外,我们还提供了用于生成可在网络应用程序中探索的分析的后端计算管道。

结论

CHARTS 是一个易于使用的综合平台,可用于探索不断增长的公共 scRNA-seq 癌症数据集内肿瘤中的单细胞亚群。CHARTS 可在 charts.morgridge.org 免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5080/7903756/5be3ebc7dd8e/12859_2021_4021_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验