Suppr超能文献

幽门螺杆菌诱导的 RASAL2 通过激活核因子-κB 通过 β-连环蛋白信号轴促进胃癌发生。

Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis.

机构信息

Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.

Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.

出版信息

Gastroenterology. 2022 May;162(6):1716-1731.e17. doi: 10.1053/j.gastro.2022.01.046. Epub 2022 Feb 5.

Abstract

BACKGROUND & AIMS: Helicobacter pylori infection is the predominant risk factor for gastric cancer. RAS protein activator like 2 (RASAL2) is considered a double-edged sword in carcinogenesis. Herein, we investigated the role of RASAL2 in response to H pylori infection and gastric tumorigenesis.

METHODS

Bioinformatics analyses of local and public databases were applied to analyze RASAL2 expression, signaling pathways, and clinical significance. In vitro cell culture, spheroids, patient-derived organoids, and in vivo mouse models were used. Molecular assays included chromatin immunoprecipitation, co-immunoprecipitation, Western blotting, quantitative polymerase chain reaction, and immunocyto/histochemistry.

RESULTS

H pylori infection induced RASAL2 expression via a nuclear factor-κB (NF-κB)-dependent mechanism whereby NF-κB was directly bound to the RASAL2 promoter activating its transcription. By gene silencing and ectopic overexpression, we found that RASAL2 upregulated β-catenin transcriptional activity. RASAL2 inhibited protein phosphatase 2A activity through direct binding with subsequent activation of the AKT/β-catenin signaling axis. Functionally, RASAL2 silencing decreased nuclear β-catenin levels and impaired tumor spheroids and organoids formation. Furthermore, the depletion of RASAL2 impaired tumor growth in gastric tumor xenograft mouse models. Clinicopathological analysis indicated that abnormal overexpression of RASAL2 correlated with poor prognosis and chemoresistance in human gastric tumors.

CONCLUSIONS

These studies uncovered a novel signaling axis of NF-κB/RASAL2/β-catenin, providing a novel link between infection, inflammation and gastric tumorigenesis.

摘要

背景与目的

幽门螺杆菌(H. pylori)感染是胃癌的主要危险因素。RAS 蛋白激活样 2(RASAL2)被认为是致癌作用中的双刃剑。在此,我们研究了 RASAL2 在应对 H. pylori 感染和胃肿瘤发生中的作用。

方法

应用局部和公共数据库的生物信息学分析来分析 RASAL2 的表达、信号通路和临床意义。体外细胞培养、球体、患者来源的类器官和体内小鼠模型均被用于研究。分子检测包括染色质免疫沉淀、共免疫沉淀、Western 印迹、实时定量聚合酶链反应和免疫细胞化学/组织化学。

结果

H. pylori 感染通过核因子-κB(NF-κB)依赖性机制诱导 RASAL2 表达,其中 NF-κB 直接与 RASAL2 启动子结合,激活其转录。通过基因沉默和异位过表达,我们发现 RASAL2 上调了β-catenin 的转录活性。RASAL2 通过与蛋白磷酸酶 2A 直接结合抑制其活性,从而激活 AKT/β-catenin 信号通路。功能上,RASAL2 的沉默降低了核内β-catenin 水平,并损害了肿瘤球体和类器官的形成。此外,RASAL2 的耗竭抑制了胃肿瘤异种移植小鼠模型中的肿瘤生长。临床病理分析表明,RASAL2 的异常过表达与人类胃肿瘤的不良预后和化疗耐药相关。

结论

这些研究揭示了一个新的 NF-κB/RASAL2/β-catenin 信号轴,为感染、炎症与胃肿瘤发生之间提供了一个新的联系。

相似文献

1
Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis.
Gastroenterology. 2022 May;162(6):1716-1731.e17. doi: 10.1053/j.gastro.2022.01.046. Epub 2022 Feb 5.
2
CDK1 bridges NF-κB and β-catenin signaling in response to H. pylori infection in gastric tumorigenesis.
Cell Rep. 2023 Jan 31;42(1):112005. doi: 10.1016/j.celrep.2023.112005. Epub 2023 Jan 21.
3
Loss of TFF1 promotes Helicobacter pylori-induced β-catenin activation and gastric tumorigenesis.
Oncotarget. 2015 Jul 20;6(20):17911-22. doi: 10.18632/oncotarget.3772.
5
YAP and β-catenin cooperate to drive -induced gastric tumorigenesis.
Gut Microbes. 2023 Jan-Dec;15(1):2192501. doi: 10.1080/19490976.2023.2192501.
7
Trefoil factor 1 expression suppresses Helicobacter pylori-induced inflammation in gastric carcinogenesis.
Cancer. 2015 Dec 15;121(24):4348-58. doi: 10.1002/cncr.29644. Epub 2015 Sep 15.
9
induced cell death is counteracted by NF-κB-mediated transcription of DARPP-32.
Gut. 2017 May;66(5):761-762. doi: 10.1136/gutjnl-2016-312141. Epub 2016 Sep 2.

引用本文的文献

1
The intersection of and gastric cancer: signaling pathways and molecular mechanisms.
Front Cell Infect Microbiol. 2025 Jun 27;15:1601501. doi: 10.3389/fcimb.2025.1601501. eCollection 2025.
2
The Sunrise of Tertiary Lymphoid Structures in Cancer.
Immunol Rev. 2025 Jul;332(1):e70046. doi: 10.1111/imr.70046.
3
Update on molecular pathogenesis of -induced gastric cancer.
World J Gastrointest Pathophysiol. 2025 Jun 22;16(2):107052. doi: 10.4291/wjgp.v16.i2.107052.
6
Helicobacter pylori, microbiota and gastric cancer - principles of microorganism-driven carcinogenesis.
Nat Rev Gastroenterol Hepatol. 2025 May;22(5):296-313. doi: 10.1038/s41575-025-01042-2. Epub 2025 Feb 26.
7
Helicobacter pylori CagA elevates FTO to induce gastric cancer progression via a "hit-and-run" paradigm.
Cancer Commun (Lond). 2025 May;45(5):608-631. doi: 10.1002/cac2.70004. Epub 2025 Feb 17.
8
Helicobacter pylori activates DOPEY1 to promote p53 degradation through the USP7/TRIP12 axis in gastric tumorigenesis.
Oncogene. 2025 May;44(18):1245-1258. doi: 10.1038/s41388-025-03303-5. Epub 2025 Feb 12.
9
Superoxide dismutase promotes gastric tumorigenesis mediated by and enhances resistance to 5-fluorouracil in gastric cancer.
iScience. 2024 Dec 7;28(2):111553. doi: 10.1016/j.isci.2024.111553. eCollection 2025 Feb 21.
10
CREB1-BCL2 drives mitochondrial resilience in RAS GAP-dependent breast cancer chemoresistance.
Oncogene. 2025 May;44(16):1093-1105. doi: 10.1038/s41388-025-03284-5. Epub 2025 Jan 31.

本文引用的文献

1
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
2
5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation.
Nat Commun. 2020 Oct 21;11(1):5321. doi: 10.1038/s41467-020-19173-2.
3
The Wnt Signalling Pathway: A Tailored Target in Cancer.
Int J Mol Sci. 2020 Oct 18;21(20):7697. doi: 10.3390/ijms21207697.
4
DOCK6 promotes chemo- and radioresistance of gastric cancer by modulating WNT/β-catenin signaling and cancer stem cell traits.
Oncogene. 2020 Sep;39(37):5933-5949. doi: 10.1038/s41388-020-01390-0. Epub 2020 Aug 4.
5
Molecular Bases of Mechanisms Accounting for Drug Resistance in Gastric Adenocarcinoma.
Cancers (Basel). 2020 Jul 30;12(8):2116. doi: 10.3390/cancers12082116.
6
The NF-κB Signaling Pathway, the Microbiota, and Gastrointestinal Tumorigenesis: Recent Advances.
Front Immunol. 2020 Jun 30;11:1387. doi: 10.3389/fimmu.2020.01387. eCollection 2020.
7
The Frequency of Ras Mutations in Cancer.
Cancer Res. 2020 Jul 15;80(14):2969-2974. doi: 10.1158/0008-5472.CAN-19-3682. Epub 2020 Mar 24.
8
RASAL2 Plays Inconsistent Roles in Different Cancers.
Front Oncol. 2019 Nov 13;9:1235. doi: 10.3389/fonc.2019.01235. eCollection 2019.
9
A view on drug resistance in cancer.
Nature. 2019 Nov;575(7782):299-309. doi: 10.1038/s41586-019-1730-1. Epub 2019 Nov 13.
10
JASPAR 2020: update of the open-access database of transcription factor binding profiles.
Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92. doi: 10.1093/nar/gkz1001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验