Suppr超能文献

基于梯度引导采样的脑磁共振图像提示性标注。

Suggestive annotation of brain MR images with gradient-guided sampling.

机构信息

Data Science Institute, Imperial College London, United Kingdom.

Data Science Institute, Imperial College London, United Kingdom.

出版信息

Med Image Anal. 2022 Apr;77:102373. doi: 10.1016/j.media.2022.102373. Epub 2022 Jan 24.

Abstract

Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks. The success of machine learning, in particular supervised learning, depends on the availability of manually annotated datasets. For medical imaging applications, such annotated datasets are not easy to acquire, it takes a substantial amount of time and resource to curate an annotated medical image set. In this paper, we propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate. We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation. Experiments show that for brain tumour segmentation task on the BraTS 2019 dataset, training a segmentation model with only 7% suggestively annotated image samples can achieve a performance comparable to that of training on the full dataset. For whole brain segmentation on the MALC dataset, training with 42% suggestively annotated image samples can achieve a comparable performance to training on the full dataset. The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.

摘要

近年来,机器学习在医学图像分析中得到了广泛应用,因为它在图像分割和分类任务中表现出色。机器学习的成功,特别是监督学习,取决于可用的手动标注数据集。对于医学成像应用,这样的标注数据集不容易获取,需要大量的时间和资源来整理标注的医学图像集。在本文中,我们提出了一种有效的脑磁共振图像标注框架,可以为人类专家提供有信息的样本图像进行标注。我们在两个不同的脑图像分析任务上评估了该框架,即脑肿瘤分割和全脑分割。实验表明,在 BraTS 2019 数据集上进行脑肿瘤分割任务时,仅使用 7%的建议标注图像样本训练分割模型,可以达到与在完整数据集上训练相同的性能。在 MALC 数据集上进行全脑分割时,使用 42%的建议标注图像样本进行训练,可以达到与在完整数据集上训练相同的性能。该框架为节省医学成像应用中的手动标注成本和提高数据效率提供了一种有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验