Suppr超能文献

一种用于长骨原发性骨肉瘤患者癌症特异性生存的具有风险分类系统的预测模型。

A predictive model with a risk-classification system for cancer-specific survival in patients with primary osteosarcoma of long bone.

作者信息

Tian Shuo, Liu Sheng, Qing Xiangcheng, Lin Hui, Peng Yizhong, Wang Baichuan, Shao Zengwu

机构信息

Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

出版信息

Transl Oncol. 2022 Apr;18:101349. doi: 10.1016/j.tranon.2022.101349. Epub 2022 Feb 5.

Abstract

BACKGROUND

Osteosarcoma (OS), most commonly occurring in long bone, is a group of malignant tumors with high incidence in adolescents. No individualized model has been developed to predict the prognosis of primary long bone osteosarcoma (PLBOS) and the current AJCC TNM staging system lacks accuracy in prognosis prediction. We aimed to develop a nomogram based on the clinicopathological factors affecting the prognosis of PLBOS patients to help clinicians predict the cancer-specific survival (CSS) of PLBOS patients.

METHOD

We studied 1199 PLBOS patients from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2015 and randomly divided the dataset into training and validation cohorts at a proportion of 7:3. Independent prognostic factors determined by stepwise multivariate Cox analysis were included in the nomogram and risk-stratification system. C-index, calibration curve, and decision curve analysis (DCA) were used to verify the performance of the nomogram.

RESULTS

Age, Histological type, Surgery of primary site, Tumor size, Local extension, Regional lymph node (LN) invasion, and Distant metastasis were identified as independent prognostic factors. C-indexes, calibration curves and DCAs of the nomogram indicating that the nomogram had good discrimination and validity. The risk-stratification system based on the nomogram showed significant differences (P < 0.05) in CSS among different risk groups.

CONCLUSION

We established a nomogram with risk-stratification system to predict CSS in PLBOS patients and demonstrated that the nomogram had good performance. This model can help clinicians evaluate prognoses, identify high-risk individuals, and give individualized treatment recommendation of PLBOS patients.

摘要

背景

骨肉瘤(OS)最常发生于长骨,是青少年中发病率较高的一组恶性肿瘤。目前尚未开发出用于预测原发性长骨骨肉瘤(PLBOS)预后的个体化模型,且当前的美国癌症联合委员会(AJCC)TNM分期系统在预后预测方面缺乏准确性。我们旨在基于影响PLBOS患者预后的临床病理因素开发一种列线图,以帮助临床医生预测PLBOS患者的癌症特异性生存(CSS)。

方法

我们研究了2004年至2015年监测、流行病学和最终结果(SEER)数据库中的1199例PLBOS患者,并将数据集以7:3的比例随机分为训练队列和验证队列。通过逐步多变量Cox分析确定的独立预后因素被纳入列线图和风险分层系统。使用C指数、校准曲线和决策曲线分析(DCA)来验证列线图的性能。

结果

年龄、组织学类型、原发部位手术、肿瘤大小、局部扩展、区域淋巴结(LN)侵犯和远处转移被确定为独立预后因素。列线图的C指数、校准曲线和DCA表明该列线图具有良好的区分度和有效性。基于列线图的风险分层系统显示不同风险组之间的CSS存在显著差异(P < 0.05)。

结论

我们建立了一个带有风险分层系统的列线图来预测PLBOS患者的CSS,并证明该列线图具有良好的性能。该模型可以帮助临床医生评估预后,识别高危个体,并给出PLBOS患者的个体化治疗建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bda8/8844746/43e3fcdd69e7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验