Suppr超能文献

骨肉瘤术后在线预后列线图的开发与验证:一项基于监测、流行病学和最终结果(SEER)数据库的回顾性研究及单中心数据的外部验证

Development and validation of an online prognostic nomogram for osteosarcoma after surgery: a retrospective study based on the SEER database and external validation with single-center data.

作者信息

Feng Liwen, Chen Yuting, Ye Ting, Shao Zengwu, Ye Chengzhi, Chen Jing

机构信息

Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Transl Cancer Res. 2022 Sep;11(9):3156-3174. doi: 10.21037/tcr-21-2756.

Abstract

BACKGROUND

Osteosarcoma is a severe malignancy with relatively low morbidity and significant variation in patient outcomes. Thus the development of predictive models could help clinicians make better-individualized decisions. The present study established a nomogram to predict postoperative survival of osteosarcoma patients using the large population-based Surveillance, Epidemiology, and End Results (SEER) database and validated it with single-center data from an Asian/Chinese population.

METHODS

Data from osteosarcoma patients who underwent surgery from 2000 to 2016 in the SEER database were obtained and were randomly divided into a training set (n=1,057) and an internal validation set (n=1,057). Data from osteosarcoma patients who underwent surgery in our hospital from 2013 to 2016 were collected as an external validation set (n=65). Univariate and multivariate Cox proportional hazard models were used in the training set to screen for prognostic factors and a nomogram was established to individually predict 1-, 3- and 5-year cancer-specific survival (CSS) and overall survival (OS). The discrimination and calibration ability of the nomogram were evaluated using the Harrell concordance index (C-index), calibration curves and area under the curve (AUC). The clinical utility was evaluated using decision curve analysis (DCA).

RESULTS

Predictive nomograms were generated using characteristics including age, pathological subtype, the American Joint Committee on Cancer (AJCC) group-N, AJCC-M, tumor size, and tumor extension for CSS and OS. The C-indexes for the CSS training set, the internal validation set, and the external validation set were 0.731, 0.713, and 0.721, respectively. The C-indexes of OS C-indices were 0.734, 0.706, and 0.719, respectively. The calibration curve suggested that the nomograms were accurate in their predictions and that DCA showed broad clinical benefits. Moreover, the present nomograms exhibited high accuracy (for CSS: AUC =0.871, 0.772, and 0.759 of 1-, 3-, and 5-year; for OS: AUC =0.869, 0.774, and 0.765 of 1-, 3-, and 5-year) versus AJCC-Stage (for CSS: AUC =0.744, 0.670, and 0.671 of 1-, 3-, and 5-year; for OS: AUC =0.721, 0.665, and 0.662 of 1-, 3-, and 5-year).

CONCLUSIONS

This study developed and validated a prognostic nomogram integrating clinicopathological characteristics for osteosarcoma patients who underwent surgery. This nomogram can provide individual risk assessment for survival.

摘要

背景

骨肉瘤是一种严重的恶性肿瘤,发病率相对较低,患者预后差异显著。因此,开发预测模型有助于临床医生做出更个体化的决策。本研究利用基于人群的大型监测、流行病学和最终结果(SEER)数据库建立了一个列线图,以预测骨肉瘤患者的术后生存率,并使用来自亚洲/中国人群的单中心数据对其进行验证。

方法

获取2000年至2016年在SEER数据库中接受手术的骨肉瘤患者的数据,并将其随机分为训练集(n = 1057)和内部验证集(n = 1057)。收集2013年至2016年在我院接受手术的骨肉瘤患者的数据作为外部验证集(n = 65)。在训练集中使用单因素和多因素Cox比例风险模型筛选预后因素,并建立列线图以单独预测1年、3年和5年的癌症特异性生存率(CSS)和总生存率(OS)。使用Harrell一致性指数(C指数)、校准曲线和曲线下面积(AUC)评估列线图的区分度和校准能力。使用决策曲线分析(DCA)评估临床实用性。

结果

利用年龄、病理亚型、美国癌症联合委员会(AJCC)组-N、AJCC-M、肿瘤大小和肿瘤扩展等特征生成了用于CSS和OS的预测列线图。CSS训练集、内部验证集和外部验证集的C指数分别为0.731、0.713和0.721。OS的C指数分别为0.734、0.706和0.719。校准曲线表明列线图预测准确,DCA显示出广泛的临床益处。此外,与AJCC分期相比,本列线图表现出更高的准确性(对于CSS:1年、3年和5年的AUC分别为0.871、0.772和0.759;对于OS:1年、3年和5年的AUC分别为0.869、0.774和0.765)(对于CSS:1年、3年和5年的AUC分别为0.744、0.670和0.671;对于OS:1年、3年和5年的AUC分别为0.721、0.665和0.662)。

结论

本研究开发并验证了一种整合临床病理特征的预后列线图用于接受手术的骨肉瘤患者。该列线图可为生存提供个体风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f543/9552060/a65a5ccd3eff/tcr-11-09-3156-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验