Suppr超能文献

基于多尺度几何变换域下多尺度信息蒸馏网络的医学图像超分辨率重建

[Medical image super-resolution reconstruction via multi-scale information distillation network under multi-scale geometric transform domain].

作者信息

Wang Huadong, Sun Ting

机构信息

School of Computer Science and Technology, Zhoukou Normal University, Zhoukou, Henan 466001, P. R. China.

Institute of Visualization Technology, Northwest University, Xi'an 710049, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Oct 25;39(5):887-896. doi: 10.7507/1001-5515.202109057.

Abstract

High resolution (HR) magnetic resonance images (MRI) or computed tomography (CT) images can provide clearer anatomical details of human body, which facilitates early diagnosis of the diseases. However, due to the imaging system, imaging environment and human factors, it is difficult to obtain clear high-resolution images. In this paper, we proposed a novel medical image super resolution (SR) reconstruction method via multi-scale information distillation (MSID) network in the non-subsampled shearlet transform (NSST) domain, namely NSST-MSID network. We first proposed a MSID network that mainly consisted of a series of stacked MSID blocks to fully exploit features from images and effectively restore the low resolution (LR) images to HR images. In addition, most previous methods predict the HR images in the spatial domain, producing over-smoothed outputs while losing texture details. Thus, we viewed the medical image SR task as the prediction of NSST coefficients, which make further MSID network keep richer structure details than that in spatial domain. Finally, the experimental results on our constructed medical image datasets demonstrated that the proposed method was capable of obtaining better peak signal to noise ratio (PSNR), structural similarity (SSIM) and root mean square error (RMSE) values and keeping global topological structure and local texture detail better than other outstanding methods, which achieves good medical image reconstruction effect.

摘要

高分辨率(HR)磁共振成像(MRI)或计算机断层扫描(CT)图像可以提供更清晰的人体解剖细节,这有助于疾病的早期诊断。然而,由于成像系统、成像环境和人为因素,很难获得清晰的高分辨率图像。在本文中,我们提出了一种在非下采样剪切波变换(NSST)域中通过多尺度信息蒸馏(MSID)网络的新型医学图像超分辨率(SR)重建方法,即NSST-MSID网络。我们首先提出了一个MSID网络,它主要由一系列堆叠的MSID块组成,以充分利用图像特征并有效地将低分辨率(LR)图像恢复为HR图像。此外,大多数以前的方法在空间域中预测HR图像,产生过度平滑的输出,同时丢失纹理细节。因此,我们将医学图像SR任务视为NSST系数的预测,这使得进一步的MSID网络比空间域中的网络保留更丰富的结构细节。最后,在我们构建的医学图像数据集上的实验结果表明,所提出的方法能够获得比其他优秀方法更好的峰值信噪比(PSNR)、结构相似性(SSIM)和均方根误差(RMSE)值,并且能更好地保持全局拓扑结构和局部纹理细节,实现了良好的医学图像重建效果。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验