Suppr超能文献

微液滴可以充当电化学电池。

Microdroplets can act as electrochemical cells.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

J Chem Phys. 2022 Feb 7;156(5):054705. doi: 10.1063/5.0078281.

Abstract

A water microdroplet in air or oil typically possesses an electric double layer (EDL) from the preferential adsorption of surface-bound ions at the periphery. We present the calculations of the ion gradients within a microdroplet at equilibrium, including systems containing buffers and water autoionization. These ion gradients are used to calculate the potential energy stored within the microdroplet. We consider how this stored potential energy can be utilized to drive chemical reactions, much like an electrochemical cell. Effective voltages as high as 111 mV are found for microdroplets having a low surface charge density (0.01 ions per nm). Two sources of potential energy are investigated: (1) the electrostatic energy of the EDL of the microdroplet and (2) shifts in other chemical equilibria coupled to the main reaction through the EDL. A particularly important example of the latter is water autoionization, wherein the reaction of interest causes a flattening of the [H] gradient within the EDL, resulting in a net recombination of H and OH throughout the microdroplet. Numerical calculations are performed using a continuum model consisting of a balance between the electromigration and diffusion of ions throughout the microdroplet. Our treatment accounts for the autoionization of water and any chemical equilibrium of buffers present. The results are presented for uncharged water microdroplets with low amounts of salts and simple buffers in them. However, the calculational method presented here can be applied to microdroplets of any net charge, composed of any solvent, containing ions of any valence, and containing complex mixtures of chemical equilibria.

摘要

空气中或油中的水微滴通常具有电双层(EDL),这是由于表面结合离子在周边的优先吸附。我们介绍了在平衡条件下微滴内离子梯度的计算,包括含有缓冲液和水自电离的系统。这些离子梯度用于计算微滴内储存的势能。我们考虑如何利用这种储存的势能来驱动化学反应,就像电化学电池一样。对于表面电荷密度低(每纳米 0.01 个离子)的微滴,发现有效电压高达 111 mV。研究了两种势能来源:(1)微滴 EDL 的静电能,(2)通过 EDL 与主要反应耦合的其他化学平衡的位移。后者的一个特别重要的例子是水自电离,其中感兴趣的反应导致 EDL 内[H]梯度变平,导致整个微滴中 H 和 OH 的净重组。使用由离子在整个微滴中电迁移和扩散之间的平衡组成的连续体模型进行数值计算。我们的处理方法考虑了水的自电离和存在的缓冲液的任何化学平衡。结果针对带少量盐和简单缓冲液的不带电的水微滴进行了呈现。然而,这里提出的计算方法可以应用于任何净电荷的微滴,由任何溶剂组成,含有任何价态的离子,并含有复杂的化学平衡混合物。

相似文献

1
Microdroplets can act as electrochemical cells.
J Chem Phys. 2022 Feb 7;156(5):054705. doi: 10.1063/5.0078281.
2
CONCENTRATION GRADIENTS INSIDE MICRODROPLETS.
Micro Total Anal Syst. 2020 Oct;2020:212-213.
3
Reaction acceleration in microdroplet mass spectrometry: Inlet capillary and solvent composition effects.
Rapid Commun Mass Spectrom. 2023 Sep;37 Suppl 1:e9498. doi: 10.1002/rcm.9498. Epub 2023 Mar 18.
4
Voltammetric Analysis of Redox Reactions and Ion Transfer in Water Microdroplets.
Langmuir. 2020 Jul 21;36(28):8231-8239. doi: 10.1021/acs.langmuir.0c01332. Epub 2020 Jul 11.
5
Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer-Villiger reactions.
Chem Sci. 2019 Mar 14;10(48):10974-10978. doi: 10.1039/c9sc05112k. eCollection 2019 Dec 28.
6
Mechanism of Hydrogen Peroxide Formation on Sprayed Water Microdroplets.
J Am Chem Soc. 2023 Aug 2;145(30):16315-16317. doi: 10.1021/jacs.3c04643. Epub 2023 Jun 9.
9
Simple model for the electric field and spatial distribution of ions in a microdroplet.
J Chem Phys. 2020 May 14;152(18):184702. doi: 10.1063/5.0006550.
10
Deciphering the Microdroplet Acceleration Factors of Aza-Michael Addition Reactions.
J Am Chem Soc. 2024 Apr 17;146(15):10963-10972. doi: 10.1021/jacs.4c02312. Epub 2024 Apr 3.

引用本文的文献

1
New horizons in nanoelectrochemistry: concluding remarks.
Faraday Discuss. 2025 Feb 17;257(0):425-436. doi: 10.1039/d4fd00183d.
2
Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode.
Nat Commun. 2024 Sep 27;15(1):8367. doi: 10.1038/s41467-024-52790-9.
3
Catalyst-Free Transformation of Carbon Dioxide to Small Organic Compounds in Water Microdroplets Nebulized by Different Gases.
Adv Sci (Weinh). 2024 Oct;11(38):e2406785. doi: 10.1002/advs.202406785. Epub 2024 Aug 11.
4
Reaction acceleration at the surface of a levitated droplet by vapor dosing from a partner droplet.
Chem Sci. 2024 Jul 2;15(31):12277-12283. doi: 10.1039/d4sc03528c. eCollection 2024 Aug 7.
5
Visualizing partial solvation at the air-water interface.
Chem Sci. 2024 Apr 24;15(22):8346-8354. doi: 10.1039/d4sc01311e. eCollection 2024 Jun 5.
6
Microstructured gas-liquid-(solid) interfaces: A platform for sustainable synthesis of commodity chemicals.
Sci Adv. 2024 May 31;10(22):eado5448. doi: 10.1126/sciadv.ado5448. Epub 2024 May 29.
7
Prebiotic synthesis of mineral-bearing microdroplet from inorganic carbon photoreduction at air-water interface.
PNAS Nexus. 2023 Nov 15;2(11):pgad389. doi: 10.1093/pnasnexus/pgad389. eCollection 2023 Nov.
8
Interface of biomolecular condensates modulates redox reactions.
Chem. 2023 Jun 8;9(6):1594-1609. doi: 10.1016/j.chempr.2023.04.001. Epub 2023 Apr 28.
9
Size-dependent charge transfer between water microdroplets.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2307977120. doi: 10.1073/pnas.2307977120. Epub 2023 Jul 24.
10
pH jump kinetics in colliding microdroplets: accelerated synthesis of azamonardine from dopamine and resorcinol.
Chem Sci. 2023 May 22;14(23):6430-6442. doi: 10.1039/d3sc01576a. eCollection 2023 Jun 14.

本文引用的文献

1
Can electric fields drive chemistry for an aqueous microdroplet?
Nat Commun. 2022 Jan 12;13(1):280. doi: 10.1038/s41467-021-27941-x.
2
Molecular Properties and Chemical Transformations Near Interfaces.
J Phys Chem B. 2021 Aug 19;125(32):9037-9051. doi: 10.1021/acs.jpcb.1c03756. Epub 2021 Aug 7.
3
A kinetic description of how interfaces accelerate reactions in micro-compartments.
Chem Sci. 2020 Jul 27;11(32):8533-8545. doi: 10.1039/d0sc03189e.
5
Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores.
Chem Rev. 2021 Jun 9;121(11):6293-6320. doi: 10.1021/acs.chemrev.0c01292. Epub 2021 May 18.
6
Condensing water vapor to droplets generates hydrogen peroxide.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):30934-30941. doi: 10.1073/pnas.2020158117. Epub 2020 Nov 23.
7
Effects of Weak Electrolytes on Electric Double Layer Ion Distributions.
J Phys Chem Lett. 2020 Oct 1;11(19):8302-8306. doi: 10.1021/acs.jpclett.0c02247. Epub 2020 Sep 18.
8
Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer-Villiger reactions.
Chem Sci. 2019 Mar 14;10(48):10974-10978. doi: 10.1039/c9sc05112k. eCollection 2019 Dec 28.
9
Quantum Mechanical Modeling of Reaction Rate Acceleration in Microdroplets.
J Phys Chem A. 2020 Jun 18;124(24):4984-4989. doi: 10.1021/acs.jpca.0c03225. Epub 2020 Jun 9.
10
Simple model for the electric field and spatial distribution of ions in a microdroplet.
J Chem Phys. 2020 May 14;152(18):184702. doi: 10.1063/5.0006550.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验