Suppr超能文献

预测 bulk segregant 分析的基因组分辨率。

Predicting the genomic resolution of bulk segregant analysis.

机构信息

Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA.

出版信息

G3 (Bethesda). 2022 Mar 4;12(3). doi: 10.1093/g3journal/jkac012.

Abstract

Bulk segregant analysis is a technique for identifying the genetic loci that underlie phenotypic trait differences. The basic approach is to compare two pools of individuals from the opposing tails of the phenotypic distribution, sampled from an interbred population. Each pool is sequenced and scanned for alleles that show divergent frequencies between the pools, indicating potential association with the observed trait differences. Bulk segregant analysis has already been successfully applied to the mapping of various quantitative trait loci in organisms ranging from yeast to maize. However, these studies have typically suffered from rather low mapping resolution, and we still lack a detailed understanding of how this resolution is affected by experimental parameters. Here, we use coalescence theory to calculate the expected genomic resolution of bulk segregant analysis for a simple monogenic trait. We first show that in an idealized interbreeding population of infinite size, the expected length of the mapped region is inversely proportional to the recombination rate, the number of generations of interbreeding, and the number of genomes sampled, as intuitively expected. In a finite population, coalescence events in the genealogy of the sample reduce the number of potentially informative recombination events during interbreeding, thereby increasing the length of the mapped region. This is incorporated into our model by an effective population size parameter that specifies the pairwise coalescence rate of the interbreeding population. The mapping resolution predicted by our calculations closely matches numerical simulations and is surprisingly robust to moderate levels of contamination of the segregant pools with alternative alleles. Furthermore, we show that the approach can easily be extended to modifications of the crossing scheme. Our framework will allow researchers to predict the expected power of their mapping experiments, and to evaluate how their experimental design could be tuned to optimize mapping resolution.

摘要

大量分离群体分析是一种用于识别表型性状差异所涉及的遗传基因座的技术。基本方法是比较来自杂交群体的表型分布两端的两个个体群体,对每个群体进行测序并扫描显示群体之间频率差异的等位基因,表明与观察到的性状差异存在潜在关联。大量分离群体分析已成功应用于从酵母到玉米等生物的各种数量性状基因座的定位。然而,这些研究通常受到相当低的映射分辨率的困扰,我们仍然缺乏对这种分辨率如何受到实验参数影响的详细了解。在这里,我们使用合并理论来计算简单单基因性状的大量分离群体分析的预期基因组分辨率。我们首先表明,在无限大小的理想化杂交群体中,预期映射区域的长度与重组率、杂交世代数和采样的基因组数量成反比,这与直观预期一致。在有限的群体中,样本的系统发育中的合并事件减少了杂交过程中潜在的信息重组事件的数量,从而增加了映射区域的长度。我们的模型通过一个有效群体大小参数来纳入这一点,该参数指定了杂交群体的成对合并率。我们的计算预测的映射分辨率与数值模拟非常吻合,并且对分离群体中替代等位基因的中度污染非常稳健。此外,我们表明该方法可以轻松扩展到杂交方案的修改。我们的框架将使研究人员能够预测他们的映射实验的预期效力,并评估他们的实验设计如何调整以优化映射分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0da/8895995/370a3511e08b/jkac012f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验