Suppr超能文献

三角棱柱形镍(II)笼配合物中零场分裂的配体设计

Ligand design of zero-field splitting in trigonal prismatic Ni(II) cage complexes.

作者信息

Campanella Anthony J, Ozvat Tyler M, Zadrozny Joseph M

机构信息

Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.

出版信息

Dalton Trans. 2022 Feb 22;51(8):3341-3348. doi: 10.1039/d1dt02156g.

Abstract

Complexes of encapsulated metal ions are promising potential metal-based electron paramagnetic resonance imaging (EPRI) agents due to zero-field splitting. Herein, we synthesize and magnetically characterize a series of five new Ni(II) complexes based on a clathrochelate ligand to provide a new design strategy for zero-field splitting in an encaged environment. UV-Vis and X-ray single-crystal diffraction experiments demonstrate slight physical and electronic structure changes as a function of the differing substituents. The consequence of these changes at the remote apical and sidearm positions of the encaging ligands is a zero-field splitting parameter () that varies over a large range of 11 cm. These results demonstrate a remarkable flexibility of the zero-field splitting and electronic structure in nickelous cages and give a clear toolkit for modifying zero-field splitting in highly stable ligand shells.

摘要

由于零场分裂,封装金属离子的配合物是很有前景的潜在金属基电子顺磁共振成像(EPRI)剂。在此,我们基于一种笼形螯合物配体合成并对一系列五个新的Ni(II)配合物进行了磁性表征,以提供一种在笼状环境中实现零场分裂的新设计策略。紫外可见光谱和X射线单晶衍射实验表明,随着取代基的不同,物理和电子结构会发生轻微变化。在笼形配体的远端顶端和侧臂位置发生的这些变化的结果是,零场分裂参数()在11 cm的大范围内变化。这些结果证明了镍笼中零场分裂和电子结构具有显著的灵活性,并为在高度稳定的配体壳中调节零场分裂提供了一个清晰的工具包。

相似文献

1
Ligand design of zero-field splitting in trigonal prismatic Ni(II) cage complexes.
Dalton Trans. 2022 Feb 22;51(8):3341-3348. doi: 10.1039/d1dt02156g.
4
Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(ii) Schiff base complexes.
Dalton Trans. 2015 May 28;44(20):9551-60. doi: 10.1039/c5dt00600g.

引用本文的文献

1
Quantum Mimicry With Inorganic Chemistry.
Comments Mod Chem A Comments Inorg Chem. 2024;44(1):11-53. doi: 10.1080/02603594.2023.2173588. Epub 2023 Feb 13.
2
Clathrochelate Complexes Containing Axial Cymantrene and Tromancenium Moieties.
Eur J Inorg Chem. 2023 Sep 13;26(26):e202300368. doi: 10.1002/ejic.202300368. Epub 2023 Jul 17.
3
Magnetic Behavior of Trigonal (Bi-)pyramidal 3d Mononuclear Nanomagnets: The Case of [Ni(MDABCO)Cl]ClO.
ACS Omega. 2023 Jul 21;8(31):28640-28650. doi: 10.1021/acsomega.3c03208. eCollection 2023 Aug 8.
4
Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits.
JACS Au. 2022 Sep 1;2(9):2029-2037. doi: 10.1021/jacsau.2c00306. eCollection 2022 Sep 26.

本文引用的文献

1
Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(III) complexes.
Dalton Trans. 2021 Apr 21;50(15):5342-5350. doi: 10.1039/d1dt00066g.
3
Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe , Co , and Ni Single-Ion Magnets.
Chemistry. 2020 Nov 6;26(62):14036-14058. doi: 10.1002/chem.202003211. Epub 2020 Oct 12.
4
The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules?
Chem Sci. 2016 Apr 21;7(4):2470-2491. doi: 10.1039/c5sc03224e. Epub 2015 Dec 23.
6
Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance.
J Magn Reson. 2017 Mar;276:31-36. doi: 10.1016/j.jmr.2016.12.015. Epub 2016 Dec 31.
8
Tuning the Ising-type anisotropy in trigonal bipyramidal Co(II) complexes.
Chem Commun (Camb). 2015 Nov 28;51(92):16475-8. doi: 10.1039/c5cc07741a.
9
Spin-Crossover Anticooperativity Induced by Weak Intermolecular Interactions.
J Phys Chem Lett. 2014 Feb 6;5(3):496-500. doi: 10.1021/jz402678q. Epub 2014 Jan 23.
10
Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research.
Contrast Media Mol Imaging. 2015 Jul-Aug;10(4):266-81. doi: 10.1002/cmmi.1630. Epub 2014 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验