Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany.
Inorg Chem. 2013 Jun 17;52(12):6880-92. doi: 10.1021/ic3026123. Epub 2013 May 23.
The coordination complexes of Ni(II) with the tripodal ligands tpta (tris[(1-phenyl-1H-1,2,3-triazol-4-yl)methyl]amine), tbta ([(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine), and tdta (tris[(1-(2,6-diisopropyl-phenyl)-1H-1,2,3-triazol-4-yl)methyl]amine) and the bidentate ligand pyta (1-(2,6-diisopropylphenyl)-4-(2-pyridyl)-1,2,3-triazole), Ni(tpta)22 (1), Ni(tbta)22 (2), Ni(tdta)22 (3), and Ni(pyta)32 (4), were synthesized from Ni(BF4)2·6H2O and the corresponding ligands. Complexes 2 and 4 were also characterized structurally using X-ray diffraction and magnetically via susceptibility measurements. Structural characterization of 2 that contains the potentially tetradentate, tripodal tbta ligand revealed that the Ni(II) center in that complex is in a distorted octahedral environment, being surrounded by two of the tripodal ligands. Each of those ligands coordinate to the Ni(II) center through the central amine nitrogen atom and two of the triazole nitrogen donors; the Ni-N(amine) distances being longer than Ni-N(triazole) distances. In case of 4, three of the bidentate ligands pyta bind to the Ni(II) center with the binding of the triazole nitrogen atoms being stronger than those of the pyridine. Temperature dependent susceptibility measurements on 2 and 4 revealed a room temperature χ(M)T value of 1.18 and 1.20 cm(3) K mol(-1), respectively, indicative of S = 1 systems. High-frequency and -field EPR (HFEPR) measurements were performed on all the complexes to accurately determine their g-tensors and the all-important zero-field splitting (zfs) parameters D and E. Interpretation of the optical d-d absorption spectra using ligand field theory revealed the B and Dq values for these complexes. Quantum chemical calculations based on the X-ray and DFT optimized geometries and their ligand field analysis have been used to characterize the metal-ligand bonding and its influence on the magnitude and sign of the zfs parameters. This is the first time that such extensive HFEPR, LFT, and advanced computational studies are being reported on a series of mononuclear, distorted octahedral Ni(II) complexes containing different kinds of nitrogen donating ligands in the same complex.
镍(II)与三脚架配体 tpta(三[(1-苯基-1H-1,2,3-三唑-4-基)甲基]胺)、tbta([(1-苄基-1H-1,2,3-三唑-4-基)甲基]胺)和 tdta(三[(1-(2,6-二异丙基-苯基)-1H-1,2,3-三唑-4-基)甲基]胺)以及双齿配体 pyta(1-(2,6-二异丙基苯基)-4-(2-吡啶基)-1,2,3-三唑),[Ni(tpta)2](BF4)2(1)、[Ni(tbta)2](BF4)2(2)、[Ni(tdta)2](BF4)2(3)和[Ni(pyta)3](BF4)2(4),均由 Ni(BF4)2·6H2O 和相应的配体合成。复合物 2 和 4 还通过磁化率的磁化率测量和 X 射线衍射进行了结构表征。结构表征表明,2 中包含潜在的四齿三脚架 tbta 配体,其中 Ni(II)中心处于扭曲的八面体环境中,被两个三脚架配体包围。每个三脚架配体通过中心胺氮原子和两个三唑氮供体与 Ni(II)中心配位;Ni-N(胺)的距离比 Ni-N(三唑)的距离长。在 4 的情况下,三个双齿配体 pyta 与 Ni(II)中心结合,其中三唑氮原子的结合强度强于吡啶氮原子的结合强度。对 2 和 4 的温度依赖磁化率测量表明,室温下 χ(M)T 值分别为 1.18 和 1.20 cm3 K mol-1,表明它们分别为 S = 1 系统。对所有配合物进行高频和高场 EPR(HFEPR)测量,以准确确定其 g 张量和非常重要的零场分裂(zfs)参数 D 和 E。使用配体场理论对光学 d-d 吸收光谱的解释揭示了这些配合物的 B 和 Dq 值。基于 X 射线和 DFT 优化的几何形状及其配体场分析的量子化学计算用于表征金属-配体键合及其对 zfs 参数的大小和符号的影响。这是首次对一系列单核、扭曲八面体 Ni(II)配合物进行如此广泛的 HFEPR、LFT 和高级计算研究,这些配合物在同一配合物中含有不同种类的氮供体配体。