Weinrauch Alyssa M, Clifford Alexander M, Folkerts Erik J, Schaefer Christina M, Giacomin Marina, Goss Greg G
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.
Am J Physiol Regul Integr Comp Physiol. 2022 Apr 1;322(4):R336-R345. doi: 10.1152/ajpregu.00003.2022. Epub 2022 Feb 9.
Hagfish are an excellent model species in which to draw inferences on the evolution of transport systems in early vertebrates owing to their basal position in vertebrate phylogeny. Glucose is a ubiquitous cellular energy source that is transported into cells via two classes of carrier proteins: sodium-glucose-linked transporters (Sglt; Slc5a) and glucose transporters (Glut; Slc2a). Although previous pharmacological evidence has suggested the presence of both sodium-dependent and -independent transport mechanisms in the hagfish, the molecular identities were heretofore unconfirmed. We have identified and phylogenetically characterized both a and gene in the Pacific hagfish (), the latter sharing common ancestry with other glucose-transporting isoforms of the Slc2a family. To assess the potential postprandial regulation of these glucose transporters, we examined the abundance and localization of these transporters with qPCR and immunohistochemistry alongside functional studies using radiolabeled d-[C]glucose. The effects of glucose or insulin injection on glucose transport rate and transporter expression were also examined to determine their potential role(s) in the regulation of intestinal glucose carrier proteins. Feeding prompted an increase in glucose uptake across the hindgut at both 0.5 mM (∼84%) and 1 mM (∼183%) concentrations. Concomitant increases were observed in hindgut Slc5a1 protein expression. These effects were not observed following either of glucose or insulin injection, indicating these postprandial factors are not the driving force for transporter regulation over this timeframe. We conclude that Pacific hagfish utilize evolutionarily conserved mechanisms of glucose uptake and so represent a useful model to understand early-vertebrate evolution of glucose uptake and regulation.
盲鳗是推断早期脊椎动物运输系统进化的优秀模式物种,因为它们在脊椎动物系统发育中处于基础地位。葡萄糖是一种普遍存在的细胞能量来源,通过两类载体蛋白转运进入细胞:钠葡萄糖协同转运蛋白(Sglt;Slc5a)和葡萄糖转运蛋白(Glut;Slc2a)。尽管先前的药理学证据表明盲鳗中存在钠依赖性和非依赖性运输机制,但迄今为止其分子身份尚未得到证实。我们已经在太平洋盲鳗(Eptatretus stoutii)中鉴定并对α和β基因进行了系统发育特征分析,后者与Slc2a家族的其他葡萄糖转运同工型具有共同的祖先。为了评估这些葡萄糖转运蛋白的潜在餐后调节作用,我们通过qPCR和免疫组织化学检测了这些转运蛋白的丰度和定位,并使用放射性标记的d-[14C]葡萄糖进行了功能研究。还检测了葡萄糖或胰岛素注射对葡萄糖转运速率和转运蛋白表达的影响,以确定它们在调节肠道葡萄糖载体蛋白中的潜在作用。喂食促使后肠在0.5 mM(约84%)和1 mM(约183%)浓度下的葡萄糖摄取增加。后肠Slc5a1蛋白表达也随之增加。葡萄糖或胰岛素注射后均未观察到这些效应,表明这些餐后因素在这段时间内不是转运蛋白调节的驱动力。我们得出结论,太平洋盲鳗利用进化上保守的葡萄糖摄取机制,因此是理解早期脊椎动物葡萄糖摄取和调节进化的有用模型。