Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
Veterans Health Administration San Diego Health Care System, La Jolla, California.
Clin Cancer Res. 2022 May 2;28(9):1832-1840. doi: 10.1158/1078-0432.CCR-21-2468.
Cancer treatments can paradoxically appear to reduce the risk of noncancer mortality in observational studies, due to residual confounding. Here we introduce a method, Bias Reduction through Analysis of Competing Events (BRACE), to reduce bias in the presence of residual confounding.
BRACE is a novel method for adjusting for bias from residual confounding in proportional hazards models. Using standard simulation methods, we compared BRACE with Cox proportional hazards regression in the presence of an unmeasured confounder. We examined estimator distributions, bias, mean squared error (MSE), and coverage probability. We then estimated treatment effects of high versus low intensity treatments in 36,630 prostate cancer, 4,069 lung cancer, and 7,117 head/neck cancer patients, using the Veterans Affairs database. We analyzed treatment effects on cancer-specific mortality (CSM), noncancer mortality (NCM), and overall survival (OS), using conventional multivariable Cox and propensity score (adjusted using inverse probability weighting) models, versus BRACE-adjusted estimates.
In simulations with residual confounding, BRACE uniformly reduced both bias and MSE. In the absence of bias, BRACE introduced bias toward the null, albeit with lower MSE. BRACE markedly improved coverage probability, but with a tendency toward overcorrection for effective but nontoxic treatments. For each clinical cohort, more intensive treatments were associated with significantly reduced hazards for CSM, NCM, and OS. BRACE attenuated OS estimates, yielding results more consistent with findings from randomized trials and meta-analyses.
BRACE reduces bias and MSE when residual confounding is present and represents a novel approach to improve treatment effect estimation in nonrandomized studies.
在观察性研究中,癌症治疗可能会因残余混杂而反常地降低非癌症死亡率的风险。在这里,我们引入了一种方法,即通过竞争事件分析来减少偏倚(Bias Reduction through Analysis of Competing Events,BRACE),以减少残余混杂引起的偏倚。
BRACE 是一种用于调整比例风险模型中残余混杂偏倚的新方法。使用标准模拟方法,我们在存在未测量混杂因素的情况下,将 BRACE 与 Cox 比例风险回归进行了比较。我们检查了估计量分布、偏差、均方误差(Mean Squared Error,MSE)和覆盖概率。然后,我们使用退伍军人事务部数据库,对 36630 例前列腺癌、4069 例肺癌和 7117 例头颈部癌患者的高强度与低强度治疗效果进行了估计。我们使用传统的多变量 Cox 和倾向评分(使用逆概率加权调整)模型,以及 BRACE 调整后的估计值,分析了治疗对癌症特异性死亡率(Cancer-Specific Mortality,CSM)、非癌症死亡率(Noncancer Mortality,NCM)和总生存率(Overall Survival,OS)的影响。
在存在残余混杂的情况下,BRACE 一致地降低了偏差和 MSE。在没有偏差的情况下,BRACE 引入了对零假设的偏差,尽管 MSE 较低。BRACE 显著提高了覆盖概率,但对于有效但非毒性的治疗方法,存在过度校正的趋势。对于每个临床队列,更密集的治疗与 CSM、NCM 和 OS 的风险显著降低相关。BRACE 减弱了 OS 的估计值,使结果更符合随机试验和荟萃分析的发现。
当存在残余混杂时,BRACE 可以减少偏差和 MSE,并代表了一种改进非随机研究中治疗效果估计的新方法。