Suppr超能文献

边缘结构 Cox 比例风险模型有限样本性质的仿真研究。

A simulation study of finite-sample properties of marginal structural Cox proportional hazards models.

机构信息

Department of Obstetrics and Gynecology and Duke Global Health Institute, Duke University, Durham, NC, USA.

出版信息

Stat Med. 2012 Aug 30;31(19):2098-109. doi: 10.1002/sim.5317. Epub 2012 Apr 11.

Abstract

Motivated by a previously published study of HIV treatment, we simulated data subject to time-varying confounding affected by prior treatment to examine some finite-sample properties of marginal structural Cox proportional hazards models. We compared (a) unadjusted, (b) regression-adjusted, (c) unstabilized, and (d) stabilized marginal structural (inverse probability-of-treatment [IPT] weighted) model estimators of effect in terms of bias, standard error, root mean squared error (MSE), and 95% confidence limit coverage over a range of research scenarios, including relatively small sample sizes and 10 study assessments. In the base-case scenario resembling the motivating example, where the true hazard ratio was 0.5, both IPT-weighted analyses were unbiased, whereas crude and adjusted analyses showed substantial bias towards and across the null. Stabilized IPT-weighted analyses remained unbiased across a range of scenarios, including relatively small sample size; however, the standard error was generally smaller in crude and adjusted models. In many cases, unstabilized weighted analysis showed a substantial increase in standard error compared with other approaches. Root MSE was smallest in the IPT-weighted analyses for the base-case scenario. In situations where time-varying confounding affected by prior treatment was absent, IPT-weighted analyses were less precise and therefore had greater root MSE compared with adjusted analyses. The 95% confidence limit coverage was close to nominal for all stabilized IPT-weighted but poor in crude, adjusted, and unstabilized IPT-weighted analysis. Under realistic scenarios, marginal structural Cox proportional hazards models performed according to expectations based on large-sample theory and provided accurate estimates of the hazard ratio.

摘要

受先前发表的 HIV 治疗研究的启发,我们模拟了受先前治疗影响的时变混杂数据,以检查边缘结构 Cox 比例风险模型的一些有限样本性质。我们比较了(a)未调整、(b)回归调整、(c)未稳定和(d)稳定的边缘结构(逆处理概率 [IPT] 加权)模型估计值的偏差、标准误差、均方根误差 (MSE) 和 95%置信限覆盖范围,涵盖了一系列研究场景,包括相对较小的样本量和 10 次研究评估。在类似于激发示例的基本情况下,真实风险比为 0.5,IPT 加权分析均无偏差,而原始和调整分析均偏向于并跨越了零假设。在包括相对较小样本量在内的一系列情况下,稳定的 IPT 加权分析仍然无偏差;然而,在原始和调整模型中,标准误差通常较小。在许多情况下,与其他方法相比,未稳定加权分析的标准误差大幅增加。对于基本情况,IPT 加权分析的根均方误差最小。在不存在先前治疗影响的时变混杂的情况下,IPT 加权分析的精度较低,因此与调整分析相比,根均方误差更大。95%置信限覆盖范围接近所有稳定 IPT 加权分析的标称值,但在原始、调整和未稳定 IPT 加权分析中较差。在现实情况下,边缘结构 Cox 比例风险模型根据基于大样本理论的预期表现良好,并提供了风险比的准确估计。

相似文献

引用本文的文献

4
SIMULATION IN PRACTICE: THE BALANCING INTERCEPT.实践中的模拟:平衡截距
Am J Epidemiol. 2021 Aug 1;190(8):1696-1698. doi: 10.1093/aje/kwab039.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验