Suppr超能文献

倾向评分匹配在三处理组队列研究中的应用。

Matching by propensity score in cohort studies with three treatment groups.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02120, USA.

出版信息

Epidemiology. 2013 May;24(3):401-9. doi: 10.1097/EDE.0b013e318289dedf.

Abstract

BACKGROUND

Nonrandomized pharmacoepidemiology generally compares one medication with another. For many conditions, clinicians can benefit from comparing the safety and effectiveness of three or more appropriate treatment options. We sought to compare three treatment groups simultaneously by creating 1:1:1 propensity score-matched cohorts.

METHODS

We developed a technique that estimates generalized propensity scores and then creates 1:1:1 matched sets. We compared this methodology with two existing approaches-construction of matched cohorts through a common-referent group and a pairwise match for each possible contrast. In a simulation, we varied unmeasured confounding, presence of treatment effect heterogeneity, and the prevalence of treatments and compared each method's bias, variance, and mean squared error (MSE) of the treatment effect. We applied these techniques to a cohort of rheumatoid arthritis patients treated with nonselective nonsteroidal anti-inflammatory drugs, COX-2 selective inhibitors, or opioids.

RESULTS

We performed 1000 simulation runs. In the base case, we observed an average bias of 0.4% (MSE × 100 = 0.2) in the three-way matching approach and an average bias of 0.3% (MSE × 100 = 0.2) with the pairwise technique. The techniques showed differing bias and MSE with increasing treatment effect heterogeneity and decreasing propensity score overlap. With highly unequal exposure prevalences, strong heterogeneity, and low overlap, we observed a bias of 6.5% (MSE × 100 = 10.8) in the three-way approach and 12.5% (MSE × 100 = 12.3) in the pairwise approach. The empirical study displayed better covariate balance using the pairwise approach. Point estimates were substantially similar.

CONCLUSIONS

Our matching approach offers an effective way to study the safety and effectiveness of three treatment options. We recommend its use over the pairwise or common-referent approaches.

摘要

背景

非随机化药物流行病学通常将一种药物与另一种药物进行比较。对于许多疾病,临床医生可以通过比较三种或更多合适的治疗选择的安全性和有效性来获益。我们试图通过创建 1:1:1 倾向评分匹配队列来同时比较三组治疗组。

方法

我们开发了一种技术,该技术可以估计广义倾向评分并创建 1:1:1 匹配组。我们将这种方法与两种现有的方法进行了比较——通过共同参照组构建匹配队列和为每个可能的对比进行成对匹配。在一项模拟中,我们改变了未测量的混杂因素、治疗效果异质性的存在、以及治疗方法的流行程度,并比较了每种方法的治疗效果的偏差、方差和均方误差(MSE)。我们将这些技术应用于一组接受非选择性非甾体抗炎药、COX-2 选择性抑制剂或阿片类药物治疗的类风湿关节炎患者的队列中。

结果

我们进行了 1000 次模拟运行。在基本情况下,我们观察到三向匹配方法的平均偏差为 0.4%(MSE×100=0.2),而成对技术的平均偏差为 0.3%(MSE×100=0.2)。随着治疗效果异质性的增加和倾向评分重叠的减少,这些技术显示出不同的偏差和 MSE。在高度不平等的暴露流行率、强烈的异质性和低重叠的情况下,我们观察到三向方法的偏差为 6.5%(MSE×100=10.8),而成对方法的偏差为 12.5%(MSE×100=12.3)。实证研究显示,使用成对方法可以更好地平衡协变量。点估计值非常相似。

结论

我们的匹配方法提供了一种研究三种治疗选择的安全性和有效性的有效方法。我们建议使用该方法,而不是使用成对或共同参照方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验