Suppr超能文献

深度学习在医疗废物分类中的应用。

A deep learning approach for medical waste classification.

机构信息

Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China.

UniDT Technology (Shanghai) Co., Ltd, Shanghai, 200436, People's Republic of China.

出版信息

Sci Rep. 2022 Feb 9;12(1):2159. doi: 10.1038/s41598-022-06146-2.

Abstract

As the demand for health grows, the increase in medical waste generation is gradually outstripping the load. In this paper, we propose a deep learning approach for identification and classification of medical waste. Deep learning is currently the most popular technique in image classification, but its need for large amounts of data limits its usage. In this scenario, we propose a deep learning-based classification method, in which ResNeXt is a suitable deep neural network for practical implementation, followed by transfer learning methods to improve classification results. We pay special attention to the problem of medical waste classification, which needs to be solved urgently in the current environmental protection context. We applied the technique to 3480 images and succeeded in correctly identifying 8 kinds of medical waste with an accuracy of 97.2%; the average F1-score of five-fold cross-validation was 97.2%. This study provided a deep learning-based method for automatic detection and classification of 8 kinds of medical waste with high accuracy and average precision. We believe that the power of artificial intelligence could be harnessed in products that would facilitate medical waste classification and could become widely available throughout China.

摘要

随着健康需求的增长,医疗废物产生量的增加逐渐超过了处理能力。在本文中,我们提出了一种用于医疗废物识别和分类的深度学习方法。深度学习是目前图像分类中最流行的技术,但它对大量数据的需求限制了它的使用。在这种情况下,我们提出了一种基于深度学习的分类方法,其中 ResNeXt 是一种适合实际应用的深度神经网络,然后采用迁移学习方法来提高分类效果。我们特别关注当前环境保护背景下急需解决的医疗废物分类问题。我们将该技术应用于 3480 张图像,成功地正确识别了 8 种医疗废物,准确率达到 97.2%;五重交叉验证的平均 F1 得分为 97.2%。本研究提供了一种基于深度学习的方法,用于自动检测和分类 8 种医疗废物,具有高精度和平均精度。我们相信,人工智能的力量可以应用于产品中,这些产品可以方便医疗废物分类,并在中国广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03a2/8828884/5152d3cb03b5/41598_2022_6146_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验