Suppr超能文献

基于卷积神经网络模型的临床抑郁症自动检测。

Automated detection of clinical depression based on convolution neural network model.

机构信息

School of Control Science and Engineering, Shandong University, Jinan, China.

School of Instrument Science and Engineering, Southeast University, Nanjing, China.

出版信息

Biomed Tech (Berl). 2022 Feb 10;67(2):131-142. doi: 10.1515/bmt-2021-0232. Print 2022 Apr 26.

Abstract

As a common mental disorder, depression is placing an increasing burden on families and society. However, the current methods of depression detection have some limitations, and it is essential to find an objective and efficient method. With the development of automation and artificial intelligence, computer-aided diagnosis has attracted more and more attention. Therefore, exploring the use of deep learning (DL) to detect depression has valuable potential. In this paper, convolutional neural network (CNN) is applied to build a diagnostic model for depression based on electroencephalogram (EEG). EEG recordings are analyzed by three different CNN structures, namely EEGNet, DeepConvNet and ShallowConvNet, to dichotomize depression patients and healthy controls. EEG data were collected in the resting state from three electrodes (Fp1, Fz, Fp2) among 80 subjects (40 depressive patients and 40 normal subjects). After the preprocessing step, the DL structures are employed to classify the data, and their recognition performance is evaluated by comparing the classification results. The classification performance shows that depression was effectively detected using EEGNet with 93.74% accuracy, 94.85% sensitivity and 92.61% specificity. In the process of optimizing the parameters of EEGNet structure, the highest accuracy can reach 94.27%. Compared with traditional diagnostic methods, EEGNet is highly worthy for the future depression detection and valuable in terms of accuracy and speed.

摘要

作为一种常见的精神障碍,抑郁症给家庭和社会带来的负担越来越大。然而,目前的抑郁症检测方法存在一些局限性,因此有必要寻找一种客观有效的方法。随着自动化和人工智能的发展,计算机辅助诊断越来越受到关注。因此,探索使用深度学习(DL)来检测抑郁症具有很大的潜力。在本文中,卷积神经网络(CNN)被应用于基于脑电图(EEG)构建抑郁症诊断模型。通过三种不同的 CNN 结构,即 EEGNet、DeepConvNet 和 ShallowConvNet,对 EEG 记录进行分析,以将抑郁症患者和健康对照者进行二分类。从 80 名受试者(40 名抑郁症患者和 40 名正常受试者)的三个电极(Fp1、Fz、Fp2)中采集静息状态下的 EEG 数据。在预处理步骤之后,使用 DL 结构对数据进行分类,并通过比较分类结果来评估它们的识别性能。分类性能表明,使用 EEGNet 可以有效地检测抑郁症,准确率为 93.74%,灵敏度为 94.85%,特异性为 92.61%。在优化 EEGNet 结构参数的过程中,最高准确率可达 94.27%。与传统的诊断方法相比,EEGNet 非常适合未来的抑郁症检测,在准确性和速度方面具有很大的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验