Suppr超能文献

多领域卷积神经网络在干电极与湿电极的下肢运动想象中的应用

Multi-Domain Convolutional Neural Networks for Lower-Limb Motor Imagery Using Dry vs. Wet Electrodes.

机构信息

Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.

Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.

出版信息

Sensors (Basel). 2021 Oct 7;21(19):6672. doi: 10.3390/s21196672.

Abstract

Motor imagery (MI) brain-computer interfaces (BCIs) have been used for a wide variety of applications due to their intuitive matching between the user's intentions and the performance of tasks. Applying dry electroencephalography (EEG) electrodes to MI BCI applications can resolve many constraints and achieve practicality. In this study, we propose a multi-domain convolutional neural networks (MD-CNN) model that learns subject-specific and electrode-dependent EEG features using a multi-domain structure to improve the classification accuracy of dry electrode MI BCIs. The proposed MD-CNN model is composed of learning layers for three domain representations (time, spatial, and phase). We first evaluated the proposed MD-CNN model using a public dataset to confirm 78.96% classification accuracy for multi-class classification (chance level accuracy: 30%). After that, 10 healthy subjects participated and performed three classes of MI tasks related to lower-limb movement (gait, sitting down, and resting) over two sessions (dry and wet electrodes). Consequently, the proposed MD-CNN model achieved the highest classification accuracy (dry: 58.44%; wet: 58.66%; chance level accuracy: 43.33%) with a three-class classifier and the lowest difference in accuracy between the two electrode types (0.22%, d = 0.0292) compared with the conventional classifiers (FBCSP, EEGNet, ShallowConvNet, and DeepConvNet) that used only a single domain. We expect that the proposed MD-CNN model could be applied for developing robust MI BCI systems with dry electrodes.

摘要

运动想象(MI)脑机接口(BCI)因其用户意图与任务执行之间的直观匹配,已被广泛应用于各种应用中。将干电极应用于 MI BCI 应用中可以解决许多约束问题,并实现实用性。在这项研究中,我们提出了一种多域卷积神经网络(MD-CNN)模型,该模型使用多域结构学习与个体和电极相关的 EEG 特征,以提高干电极 MI BCI 的分类准确性。所提出的 MD-CNN 模型由三个域表示(时间、空间和相位)的学习层组成。我们首先使用公共数据集评估了所提出的 MD-CNN 模型,以确认多类分类(机会水平准确率:30%)的准确率为 78.96%。之后,10 名健康受试者参与并在两个会话(干电极和湿电极)中执行了与下肢运动(步态、坐下和休息)相关的三个 MI 任务。因此,所提出的 MD-CNN 模型使用三分类器实现了最高的分类准确性(干电极:58.44%;湿电极:58.66%;机会水平准确率:43.33%),并且与传统分类器(FBCSP、EEGNet、ShallowConvNet 和 DeepConvNet)相比,两种电极类型之间的准确率差异最小(0.22%,d = 0.0292)。我们期望所提出的 MD-CNN 模型可以应用于开发具有干电极的稳健 MI BCI 系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5970/8513081/75d99963084a/sensors-21-06672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验