纳米结构化对金属生物电极电化学性能的影响。
Effects of nanostructuration on the electrochemical performance of metallic bioelectrodes.
作者信息
Mobini Sahba, González María Ujué, Caballero-Calero Olga, Patrick Erin E, Martín-González Marisol, García-Martín José Miguel
机构信息
Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain.
Department of Electrical and Computer Engineering, University of Florida, Center Drive 968, Gainesville, FL 32603, USA.
出版信息
Nanoscale. 2022 Feb 24;14(8):3179-3190. doi: 10.1039/d1nr06280h.
The use of metallic nanostructures in the fabrication of bioelectrodes (, neural implants) is gaining attention nowadays. Nanostructures provide increased surface area that might benefit the performance of bioelectrodes. However, there is a need for comprehensive studies that assess electrochemical performance of nanostructured surfaces in physiological and relevant working conditions. Here, we introduce a versatile scalable fabrication method based on magnetron sputtering to develop analogous metallic nanocolumnar structures (NCs) and thin films (TFs) from Ti, Au, and Pt. We show that NCs contribute significantly to reduce the impedance of metallic surfaces. Charge storage capacity of Pt NCs is remarkably higher than that of Pt TFs and that of the other metals in both morphologies. Circuit simulations of the electrode/electrolyte interface show that the signal delivered in voltage-controlled systems is less filtered when nanocolumns are used. In a current-controlled system, simulation shows that NCs provide safer stimulation conditions compared to TFs. We have assessed the durability of NCs and TFs for potential use by reactive accelerated aging test, mimicking one-year implantation. Although each metal/morphology reveals a unique response to aging, NCs show overall more stable electrochemical properties compared to TFs in spite of their porous structure.
如今,金属纳米结构在生物电极(如神经植入物)制造中的应用正受到关注。纳米结构提供了更大的表面积,这可能有益于生物电极的性能。然而,需要进行全面研究来评估纳米结构表面在生理及相关工作条件下的电化学性能。在此,我们介绍一种基于磁控溅射的通用可扩展制造方法,以制备来自钛、金和铂的类似金属纳米柱状结构(NCs)和薄膜(TFs)。我们表明,纳米柱状结构对降低金属表面阻抗有显著贡献。铂纳米柱状结构的电荷存储容量明显高于铂薄膜以及两种形态下的其他金属。电极/电解质界面的电路模拟表明,在使用纳米柱时,电压控制系统中传递的信号滤波较少。在电流控制系统中,模拟表明与薄膜相比,纳米柱状结构提供了更安全的刺激条件。我们通过模拟一年植入的反应加速老化试验评估了纳米柱状结构和薄膜用于潜在用途时的耐久性。尽管每种金属/形态对老化都有独特的反应,但尽管纳米柱状结构具有多孔结构,与薄膜相比,其总体电化学性能更稳定。