Darlot Fannie, Villard Paul, Salam Lara Abdel, Rousseau Lionel, Piret Gaëlle
Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France.
ESIEE - ESYCOM Université Paris Est, Noisy-le-Grand, France.
Front Bioeng Biotechnol. 2024 Jul 22;12:1408088. doi: 10.3389/fbioe.2024.1408088. eCollection 2024.
Many invasive and noninvasive neurotechnologies are being developed to help treat neurological pathologies and disorders. Making a brain implant safe, stable, and efficient in the long run is one of the requirements to conform with neuroethics and overcome limitations for numerous promising neural treatments. A main limitation is low biocompatibility, characterized by the damage implants create in brain tissue and their low adhesion to it. This damage is partly linked to friction over time due to the mechanical mismatch between the soft brain tissue and the more rigid wires. Here, we performed a short biocompatibility assessment of bio-inspired intra-cortical implants named "Neurosnooper" made of a microelectrode array consisting of a thin, flexible polymer-metal-polymer stack with microwires that mimic axons. Implants were assembled into poly-lactic-glycolic acid (PLGA) biodegradable needles for their intra-cortical implantation. The study of glial scars around implants, at 7 days and 2 months post-implantation, revealed a good adhesion between the brain tissue and implant wires and a low glial scar thickness. The lowest corresponds to electrode wires with a section size of 8 μm × 10 μm, compared to implants with the 8 μm × 50 μm electrode wire section size, and a straight shape appears to be better than a zigzag. Therefore, in addition to flexibility, size and shape parameters are important when designing electrode wires for the next generation of clinical intra-cortical implants.
许多侵入性和非侵入性神经技术正在研发中,以帮助治疗神经病理学和神经紊乱。从长远来看,使脑植入物安全、稳定且高效是符合神经伦理并克服众多有前景的神经治疗方法局限性的要求之一。一个主要局限性是生物相容性低,其特征在于植入物对脑组织造成的损伤以及它们与脑组织的低粘附性。这种损伤部分与由于软脑组织和更硬的导线之间的机械不匹配导致的长期摩擦有关。在此,我们对一种名为“Neurosnooper”的受生物启发的皮质内植入物进行了简短的生物相容性评估,该植入物由微电极阵列制成,微电极阵列由模仿轴突的带有微丝的薄柔性聚合物 - 金属 - 聚合物堆叠组成。植入物被组装到聚乳酸 - 乙醇酸(PLGA)可生物降解针中以便进行皮质内植入。对植入物周围在植入后7天和2个月时的胶质瘢痕的研究表明,脑组织与植入物导线之间具有良好的粘附性且胶质瘢痕厚度较低。与具有8μm×50μm电极线截面尺寸的植入物相比,最低值对应于截面尺寸为8μm×10μm的电极线,并且直线形状似乎优于之字形。因此,除了柔韧性之外,尺寸和形状参数在设计下一代临床皮质内植入物的电极线时也很重要。