Suppr超能文献

一种基于模型生成带注释压力支持波形的方法。

A model-based approach to generating annotated pressure support waveforms.

作者信息

van Diepen A, Bakkes T H G F, De Bie A J R, Turco S, Bouwman R A, Woerlee P H, Mischi M

机构信息

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands.

Catharina Hospital, Eindhoven, The Netherlands.

出版信息

J Clin Monit Comput. 2022 Dec;36(6):1739-1752. doi: 10.1007/s10877-022-00822-4. Epub 2022 Feb 10.

Abstract

Large numbers of asynchronies during pressure support ventilation cause discomfort and higher work of breathing in the patient, and are associated with an increased mortality. There is a need for real-time decision support to detect asynchronies and assist the clinician towards lung-protective ventilation. Machine learning techniques have been proposed to detect asynchronies, but they require large datasets with sufficient data diversity, sample size, and quality for training purposes. In this work, we propose a method for generating a large, realistic and labeled, synthetic dataset for training and validating machine learning algorithms to detect a wide variety of asynchrony types. We take a model-based approach in which we adapt a non-linear lung-airway model for use in a diverse patient group and add a first-order ventilator model to generate labeled pressure, flow, and volume waveforms of pressure support ventilation. The model was able to reproduce basic measured lung mechanics parameters. Experienced clinicians were not able to differentiate between the simulated waveforms and clinical data (P = 0.44 by Fisher's exact test). The detection performance of the machine learning trained on clinical data gave an overall comparable true positive rate on clinical data and on simulated data (an overall true positive rate of 94.3% and positive predictive value of 93.5% on simulated data and a true positive rate of 98% and positive predictive value of 98% on clinical data). Our findings demonstrate that it is possible to generate labeled pressure and flow waveforms with different types of asynchronies.

摘要

压力支持通气期间大量的不同步会导致患者不适并增加呼吸功,且与死亡率增加相关。需要实时决策支持来检测不同步并协助临床医生实现肺保护性通气。已经提出了机器学习技术来检测不同步,但它们需要用于训练目的的具有足够数据多样性、样本量和质量的大型数据集。在这项工作中,我们提出了一种方法,用于生成一个大型、逼真且带标签的合成数据集,以训练和验证用于检测各种不同步类型的机器学习算法。我们采用基于模型的方法,其中我们调整一个非线性肺气道模型以用于不同的患者群体,并添加一个一阶呼吸机模型来生成压力支持通气的带标签的压力、流量和容积波形。该模型能够重现基本的实测肺力学参数。经验丰富的临床医生无法区分模拟波形和临床数据(Fisher精确检验P = 0.44)。在临床数据上训练的机器学习的检测性能在临床数据和模拟数据上给出了总体相当的真阳性率(模拟数据上的总体真阳性率为94.3%,阳性预测值为93.5%;临床数据上的真阳性率为98%,阳性预测值为98%)。我们的研究结果表明,可以生成具有不同类型不同步的带标签的压力和流量波形。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a847/9637593/0c9293f88b2b/10877_2022_822_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验