Suppr超能文献

用于半监督医学图像分割的形状和边界感知多分支模型

Shape and boundary-aware multi-branch model for semi-supervised medical image segmentation.

作者信息

Liu Xiaowei, Hu Yikun, Chen Jianguo, Li Keqin

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.

Institute for Infocomm Research, Agency for Science, Technology and Research, 138 632, Singapore.

出版信息

Comput Biol Med. 2022 Apr;143:105252. doi: 10.1016/j.compbiomed.2022.105252. Epub 2022 Jan 26.

Abstract

Supervised learning-based medical image segmentation solutions usually require sufficient labeled training data. Insufficient available labeled training data often leads to the limitations of model performances, such as over-fitting, low accuracy, and poor generalization ability. However, this dilemma may worsen in the field of medical image analysis. Medical image annotation is usually labor-intensive and professional work. In this work, we propose a novel shape and boundary-aware deep learning model for medical image segmentation based on semi-supervised learning. The model makes good use of labeled data and also enables unlabeled data to be well applied by using task consistency loss. Firstly, we adopt V-Net for Pixel-wise Segmentation Map (PSM) prediction and Signed Distance Map (SDM) regression. In addition, we multiply multi-scale features, extracted by Pyramid Pooling Module (PPM) from input X, with 2 - |SDM| to enhance the features around the boundary of the segmented target, and then feed them into the Feature Fusion Module (FFM) for fine segmentation. Besides boundary loss, the high-level semantics implied in SDM facilitate the accurate segmentation of boundary regions. Finally, we get the ultimate result by fusing coarse and boundary-enhanced features. Last but not least, to mine unlabeled training data, we impose consistency constraints on the three core outputs of the model, namely PSM1, SDM, and PSM3. Through extensive experiments over three representative but challenging medical image datasets (LA2018, BraTS2019, and ISIC2018) and comparisons with the existing representative methods, we validate the practicability and superiority of our model.

摘要

基于监督学习的医学图像分割解决方案通常需要足够的标注训练数据。可用的标注训练数据不足往往会导致模型性能受限,如过拟合、低准确率和泛化能力差等问题。然而,在医学图像分析领域,这种困境可能会更加严重。医学图像标注通常是劳动密集型且专业性很强的工作。在这项工作中,我们提出了一种基于半监督学习的新颖的形状和边界感知深度学习模型用于医学图像分割。该模型充分利用标注数据,同时通过使用任务一致性损失使未标注数据也能得到良好应用。首先,我们采用V-Net进行逐像素分割图(PSM)预测和符号距离图(SDM)回归。此外,我们将金字塔池化模块(PPM)从输入X中提取的多尺度特征与2 - |SDM|相乘,以增强分割目标边界周围的特征,然后将其输入到特征融合模块(FFM)进行精细分割。除了边界损失外,SDM中隐含的高级语义有助于边界区域的准确分割。最后,我们通过融合粗略特征和边界增强特征得到最终结果。最后但同样重要的是,为了挖掘未标注训练数据,我们对模型的三个核心输出,即PSM1、SDM和PSM3施加一致性约束。通过在三个具有代表性但具有挑战性的医学图像数据集(LA2018、BraTS2019和ISIC2018)上进行广泛实验,并与现有的代表性方法进行比较,我们验证了我们模型的实用性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验