Hung Sung-Fu, Xu Aoni, Wang Xue, Li Fengwang, Hsu Shao-Hui, Li Yuhang, Wicks Joshua, Cervantes Eduardo González, Rasouli Armin Sedighian, Li Yuguang C, Luo Mingchuan, Nam Dae-Hyun, Wang Ning, Peng Tao, Yan Yu, Lee Geonhui, Sargent Edward H
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
Nat Commun. 2022 Feb 10;13(1):819. doi: 10.1038/s41467-022-28456-9.
Nitrogen-doped graphene-supported single atoms convert CO to CO, but fail to provide further hydrogenation to methane - a finding attributable to the weak adsorption of CO intermediates. To regulate the adsorption energy, here we investigate the metal-supported single atoms to enable CO hydrogenation. We find a copper-supported iron-single-atom catalyst producing a high-rate methane. Density functional theory calculations and in-situ Raman spectroscopy show that the iron atoms attract surrounding intermediates and carry out hydrogenation to generate methane. The catalyst is realized by assembling iron phthalocyanine on the copper surface, followed by in-situ formation of single iron atoms during electrocatalysis, identified using operando X-ray absorption spectroscopy. The copper-supported iron-single-atom catalyst exhibits a CO-to-methane Faradaic efficiency of 64% and a partial current density of 128 mA cm, while the nitrogen-doped graphene-supported one produces only CO. The activity is 32 times higher than a pristine copper under the same conditions of electrolyte and bias.
氮掺杂石墨烯负载的单原子可将CO转化为CO,但无法进一步氢化生成甲烷——这一发现归因于CO中间体的弱吸附。为了调节吸附能,我们在此研究金属负载的单原子以实现CO氢化。我们发现一种铜负载的铁单原子催化剂能高产率生成甲烷。密度泛函理论计算和原位拉曼光谱表明,铁原子吸引周围的中间体并进行氢化以生成甲烷。该催化剂通过将铁酞菁组装在铜表面实现,随后在电催化过程中原位形成单铁原子,通过原位X射线吸收光谱进行鉴定。铜负载的铁单原子催化剂的CO到甲烷的法拉第效率为64%,部分电流密度为128 mA cm,而氮掺杂石墨烯负载的催化剂仅生成CO。在相同的电解质和偏压条件下,其活性比原始铜高32倍。