Busche Marius, Rabl Dominik, Fischer Jan, Schmees Christian, Mayr Torsten, Gebhardt Rolf, Stelzle Martin
NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria.
EXCLI J. 2022 Jan 7;21:144-161. doi: 10.17179/excli2021-4351. eCollection 2022.
Oxygen plays a fundamental role in cellular energy metabolism, differentiation and cell biology in general. Consequently, oxygen sensing can be used to assess cell vitality and detect specific mechanisms of toxicity. In 2D models currently used, the oxygen supply provided by diffusion is generally too low, especially for cells having a high oxygen demand. In organ-on-chip systems, a more physiologic oxygen supply can be generated by establishing unidirectional perfusion. We established oxygen sensors an easy-to-use and parallelized organ-on-chip system. We demonstrated the applicability of this system by analyzing the influence of fructose (40 mM, 80 mM), ammonium chloride (100 mM) and Na-diclofenac (50 µM, 150 µM, 450 µM, 1500 µM) on primary human hepatocytes (PHH). Fructose treatment for two hours showed an immediate drop of oxygen consumption (OC) with subsequent increase to nearly initial levels. Treatment with 80 mM glucose, 20 mM lactate or 20 mM glycerol did not result in any changes in OC which demonstrates a specific effect of fructose. Application of ammonium chloride for two hours did not show any immediate effects on OC, but qualitatively changed the cellular response to FCCP treatment. Na-diclofenac treatment for 24 hours led to a decrease of the maximal respiration and reserve capacity. We also demonstrated the stability of our system by repeatedly treating cells with 40 mM fructose, which led to similar cell responses on the same day as well as on subsequent days. In conclusion, our system enables in depth analysis of cellular respiration after substrate treatment in an unidirectional perfused organ-on-chip system.
氧气在细胞能量代谢、分化以及一般细胞生物学过程中发挥着基础性作用。因此,氧传感可用于评估细胞活力并检测特定的毒性机制。在目前使用的二维模型中,通过扩散提供的氧气供应通常过低,特别是对于那些对氧气需求较高的细胞。在芯片器官系统中,可以通过建立单向灌注来产生更接近生理状态的氧气供应。我们建立了一种易于使用且可并行化的芯片器官系统中的氧传感器。我们通过分析果糖(40 mM、80 mM)、氯化铵(100 mM)和双氯芬酸钠(50 μM、150 μM、450 μM、1500 μM)对原代人肝细胞(PHH)的影响,证明了该系统的适用性。果糖处理两小时显示氧气消耗(OC)立即下降,随后又增加到接近初始水平。用80 mM葡萄糖、20 mM乳酸或20 mM甘油处理并未导致OC发生任何变化,这表明果糖具有特定作用。氯化铵处理两小时对OC没有立即产生任何影响,但定性地改变了细胞对FCCP处理的反应。双氯芬酸钠处理24小时导致最大呼吸和储备能力下降。我们还通过用40 mM果糖反复处理细胞,证明了我们系统的稳定性,这导致在同一天以及随后几天细胞产生相似的反应。总之,我们的系统能够在单向灌注的芯片器官系统中对底物处理后的细胞呼吸进行深入分析。