Suppr超能文献

多种不同阳离子的可控运输引发核酸水解。

Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis.

作者信息

Manigrasso Jacopo, De Vivo Marco, Palermo Giulia

机构信息

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy.

Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States.

出版信息

ACS Catal. 2021 Jul 16;11(14):8786-8797. doi: 10.1021/acscatal.1c01825. Epub 2021 Jul 2.

Abstract

Recent reaction intermediates have detailed how nucleic acid hydrolysis occurs in the RNA ribonuclease H1 (RNase H1), a fundamental metalloenzyme involved in maintaining the human genome. At odds with the previous characterization, these structures unexpectedly captured multiple metal ions (K and Mg) transiently bound in the vicinity of the two-metal-ion active site. Using multi-microsecond all-atom molecular dynamics and free-energy simulations, we investigated the functional implications of the dynamic exchange of multiple K and Mg ions at the RNase H1 reaction center. We found that such ions are timely positioned at non-overlapping locations near the active site, at different stages of catalysis, being crucial for both reactants' alignment and leaving group departure. We also found that this cation trafficking is tightly regulated by variations of the solution's ionic strength and is aided by two conserved second-shell residues, E188 and K196, suggesting a mechanism for the cations' recruitment during catalysis. These results indicate that controlled trafficking of multi-cation dynamics, opportunely prompted by second-shell residues, is functionally essential to the complex enzymatic machinery of the RNase H1. These findings revise the current knowledge on the RNase H1 catalysis and open new catalytic possibilities for other similar metalloenzymes including, but not limited to, CRISPR-Cas9, group II intron ribozyme and the human spliceosome.

摘要

近期对反应中间体的研究详细阐述了核酸水解在RNA核糖核酸酶H1(RNase H1)中是如何发生的,RNase H1是一种参与维持人类基因组的重要金属酶。与之前的表征不同,这些结构意外地捕捉到多个金属离子(K和Mg)短暂结合在双金属离子活性位点附近。利用多微秒全原子分子动力学和自由能模拟,我们研究了RNase H1反应中心多个K和Mg离子动态交换的功能意义。我们发现,这些离子在催化的不同阶段适时地定位在活性位点附近不重叠的位置,这对反应物的排列和离去基团的离去都至关重要。我们还发现,这种阳离子运输受到溶液离子强度变化的严格调控,并得到两个保守的第二壳层残基E188和K196的辅助,这表明了催化过程中阳离子募集的一种机制。这些结果表明,由第二壳层残基适时引发的多阳离子动态的受控运输对RNase H1复杂的酶促机制在功能上至关重要。这些发现修正了目前关于RNase H1催化的知识,并为其他类似的金属酶开辟了新的催化可能性,包括但不限于CRISPR-Cas9、II类内含子核酶和人类剪接体。

相似文献

1
Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis.
ACS Catal. 2021 Jul 16;11(14):8786-8797. doi: 10.1021/acscatal.1c01825. Epub 2021 Jul 2.
2
Cation trafficking propels RNA hydrolysis.
Nat Struct Mol Biol. 2018 Aug;25(8):715-721. doi: 10.1038/s41594-018-0099-4. Epub 2018 Aug 3.
3
Catalytic metal ions and enzymatic processing of DNA and RNA.
Acc Chem Res. 2015 Feb 17;48(2):220-8. doi: 10.1021/ar500314j. Epub 2015 Jan 15.
6
Third Metal Ion Dictates the Catalytic Activity of the Two-Metal-Ion Pre-Ribosomal RNA-Processing Machinery.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202405819. doi: 10.1002/anie.202405819. Epub 2024 Sep 17.
7
Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases.
J Am Chem Soc. 2020 Feb 12;142(6):2823-2834. doi: 10.1021/jacs.9b10656. Epub 2020 Jan 27.
8
Evidence for a dual functional role of a conserved histidine in RNA·DNA heteroduplex cleavage by human RNase H1.
FEBS J. 2012 Dec;279(24):4492-500. doi: 10.1111/febs.12035. Epub 2012 Nov 9.
9
Molecular Dynamics Study of Twister Ribozyme: Role of Mg(2+) Ions and the Hydrogen-Bonding Network in the Active Site.
Biochemistry. 2016 Jul 12;55(27):3834-46. doi: 10.1021/acs.biochem.6b00203. Epub 2016 Jun 27.
10
Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site.
J Biol Chem. 2001 Mar 9;276(10):7266-71. doi: 10.1074/jbc.M009626200. Epub 2000 Nov 16.

引用本文的文献

1
Coordinated Residue Motions at the Enzyme-Substrate Interface Promote DNA Translocation in Polymerases.
J Am Chem Soc. 2025 Jul 2;147(26):22972-22985. doi: 10.1021/jacs.5c05888. Epub 2025 Jun 17.
3
Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome.
Nat Commun. 2023 Dec 20;14(1):8482. doi: 10.1038/s41467-023-44174-2.
4
Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines.
Annu Rev Biophys. 2023 May 9;52:525-551. doi: 10.1146/annurev-biophys-111622-091140. Epub 2023 Feb 15.

本文引用的文献

1
Structural basis for conformational equilibrium of the catalytic spliceosome.
Mol Cell. 2021 Apr 1;81(7):1439-1452.e9. doi: 10.1016/j.molcel.2021.02.021. Epub 2021 Mar 10.
2
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Molecular Dynamics.
ACS Catal. 2020 Nov 20;10(22):13596-13605. doi: 10.1021/acscatal.0c03566. Epub 2020 Nov 10.
3
Visualizing group II intron dynamics between the first and second steps of splicing.
Nat Commun. 2020 Jun 5;11(1):2837. doi: 10.1038/s41467-020-16741-4.
5
Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases.
J Am Chem Soc. 2020 Feb 12;142(6):2823-2834. doi: 10.1021/jacs.9b10656. Epub 2020 Jan 27.
6
A Transient and Flexible Cation-π Interaction Promotes Hydrolysis of Nucleic Acids in DNA and RNA Nucleases.
J Am Chem Soc. 2019 Jul 10;141(27):10770-10776. doi: 10.1021/jacs.9b03663. Epub 2019 Jun 28.
7
Structure and Dynamics of the CRISPR-Cas9 Catalytic Complex.
J Chem Inf Model. 2019 May 28;59(5):2394-2406. doi: 10.1021/acs.jcim.8b00988. Epub 2019 Feb 27.
8
GPU-Accelerated Molecular Dynamics and Free Energy Methods in Amber18: Performance Enhancements and New Features.
J Chem Inf Model. 2018 Oct 22;58(10):2043-2050. doi: 10.1021/acs.jcim.8b00462. Epub 2018 Sep 25.
9
Cation trafficking propels RNA hydrolysis.
Nat Struct Mol Biol. 2018 Aug;25(8):715-721. doi: 10.1038/s41594-018-0099-4. Epub 2018 Aug 3.
10
Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase η with QM/MM Free Energy Simulations.
J Am Chem Soc. 2018 Jul 18;140(28):8965-8969. doi: 10.1021/jacs.8b05177. Epub 2018 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验